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Abstract

The closed cone of flag vectors of Eulerian partially ordered sets
is studied. A new family of linear inequalities valid for Eulerian flag
vectors is given. Half-Eulerian posets are defined. Certain limit posets
of Billera and Hetyei are half-Eulerian; they give rise to extreme rays
of the cone for Eulerian posets. Other extreme posets are formed from
consideration of the cd-index. The cone of Eulerian flag vectors is
completely determined up through rank seven.

1 Introduction

The study of Eulerian partially ordered sets (posets) originated with Stanley
([18]). Examples of Eulerian posets are the posets of faces of regular CW
spheres. These include face lattices of convex polytopes, the Bruhat order
on finite Coxeter groups, and the lattices of regions of oriented matroids.
(See [11] and [12].)

The flag f-vector (or simply flag vector) of a poset is a standard pa-
rameter counting chains in the partially ordered set by ranks. In the last
twenty years there has grown a body of work on numerical conditions on flag
vectors of posets and complexes, especially those arising in geometric con-
texts. Early contributions are from Stanley on balanced Cohen-Macaulay
complexes ([17]) and Bayer and Billera on the linear equations on flag vec-
tors of Eulerian posets ([4]). For an extensive survey of inequalities on flag
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numbers of polytopes see [16]. A major recent contribution is the determi-
nation of the closed cone of flag vectors of all graded posets by Billera and
Hetyei ([8]). Results on flag vectors and other invariants of Eulerian posets
and special classes of them are surveyed in [21].

Our goal has been to describe the closed cone of flag f-vectors of Eulerian
partially ordered sets. This problem was posed explicitly in [10]. There is
no reason to expect that every positive integer vector in this cone is the flag
vector of some Eulerian poset. Nonlinear inequalities may come into play,
but their analysis is much more difficult. We focus here on linear inequalities
valid for all Eulerian flag vectors and the Eulerian posets with extreme flag
vectors. This approach has been used previously to study f-vectors and
flag vectors of various classes of posets. See Bayer ([2]) on four-dimensional
polytopes, Babson, Billera and Chan ([1]) on cubical polytopes, and Billera
and Hetyei ([8, 9]) on graded posets and planar posets. In all cases where
the cone is known, it turns out to be finitely generated; this is verified only
by finding a complete, finite set of facets or extremes. We expect that the
same holds for the cone of flag vectors of Eulerian posets.

Finding the facets of the cone means finding all crucial inequalities sat-
isfied by Eulerian flag vectors. One set of inequalities (given in Proposi-
tion 3.1) follows easily from the definition of Eulerian. A second set proved
here (Theorem 3.2) generalizes an inequality found by Billera and Liu ([10]).
We do not know if these two classes of inequalities are enough to determine
completely the cone.

Billera and Hetyei ([8]) developed a poset construction that yields all the
extreme rays of the cone of flag vectors of graded posets. By introducing
the concept of a “half-Eulerian” poset, we are able to use the Billera-Hetyei
construction to find extreme rays of the Eulerian cone. For rank n + 1 this
gives (LnT/L2 J) extreme rays. Not all the extreme rays come this way, however,
and we are forced to use more complicated constructions of extreme Eulerian
posets. These constructions are suggested by the ce-index (a variation of
the cd-index).

The ability to explore the cone in low ranks using the computer package
PORTA ([14]) was crucial to this project. The straightforward description
of the cone in ranks at most 6 breaks down at rank 7. This leads us to new
classes of inequalities and extremes.

The remainder of this section provides definitions and other background,
and the definition of the flag L-vector, which simplifies the calculations. Sec-
tion 2 describes the extreme rays of the general graded cone, defines half-
Eulerian posets, identifies which limit posets are half-Eulerian, and computes
the corresponding cd-indices. Section 3 gives two general classes of inequal-



ities on Eulerian flag vectors. Section 4 shows that the half-Eulerian limit
posets all give extremes of the Eulerian cone, identifies some inequalities in
all ranks as facet-inducing, and describes completely the cone for rank at
most 7.

1.1 Background

A graded poset P is a finite partially ordered set with a unique minimum
element 0, a unique maximum element 1, and a rank function p: P — N
satisfying p(0) = 0, and p(y) — p(z) = 1 whenever y € P covers = € P.
The rank p(P) of a graded poset P is the rank of its maximum element.
Given a graded poset P of rank n+ 1 and a subset S of {1,2,...,n} (which
we abbreviate as [1,n]), define the S—rank—-selected subposet of P to be the
poset
Ps={zxecP : p(x) e Syu{0,1}.

Denote by fs(P) the number of maximal chains of Pg. Equivalently, fs(P) is
the number of chains z; < --- < z|g in P such that {p(z1),...,p(z|5)} = S.
The vector (fs(P) : S C[1,n]) is called the flag f-vector of P. Whenever
it does not cause confusion, we write fs, g, rather than fr, in par-
ticular, frm,) is always denoted fy,.

Various properties of the flag f-vector are more easily seen in different
bases. An often used equivalent encoding is the flag h-vector (hg(P) : S C [1,n])
given by the formula

Sk}

hs(P) =Y (-1)IS\1gp(P),

TCS

= > hr(P

TCS

or, equivalently,

The ab-index Up(a,b) of P is a generating function for the flag h-vector. It
is the following polynomial in the noncommuting variables a and b:

¥p(a,b) Z hs(P)ug, (1)
SC[1,n]

where ug is the monomial ujus---u, with u; = a if ¢ € S, and u; = b if
t€S.

The Mobius function of a graded poset P is defined recursively for any
subinterval of P by the formula

plle, y)) = {

1 ife=uy,
— Ya<z<y W[z, 2]) otherwise.
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Equivalently, by Philip Hall’s theorem, the Mobius function of a graded poset
P of rank n+1 is the reduced Euler characteristic of the order complex, i.e.,
it is given by the formula

w(P)= 3 (-1 fs(P). (2)
SC[1,n]
(See [19, Proposition 3.8.5].)

A graded poset P is Fulerian if the Mobius function of every interval
[z,y] is given by u([z,y]) = (~1)?¥). (Here p(z,y) = p([z,y]) = p(y) —
p(z))

The first characterization of all linear equalities holding for the flag f-
vectors of all Eulerian posets was given by Bayer and Billera in [4]. The
equations of the theorem are called the generalized Dehn-Sommerville equa-
tions. Call the subspace of R?" they determine the Eulerian subspace; its
dimension is the Fibonacci number e, (eg =e1 =1, e, = ep—1 + €p—2).

Theorem 1.1 (Bayer and Billera) Ewvery linear equality holding for the
flag f-vector of all Eulerian posets of rank n + 1 is a consequence of the
equalities

k
(17 + (DR fs 4+ (1) fsugy = 0
Jj=t

for S C[1,n] and [i, k] a mazimal interval of [1,n]\ S.

Fine discovered that the ab-index of a polytope can be written as a
polynomial in the noncommuting variables ¢ = a + b and d = ab + ba.
Bayer and Klapper ([6]) proved that for a graded poset P, the equations of
Theorem 1.1 hold if and only if the ab-index is a polynomial with integer
coefficients in ¢ and d. This polynomial is called the cd-index of P. Stanley
([20]) gives an explicit recursion for the cd-index in terms of intervals of P
for Eulerian posets. (He thus gives another proof of the existence of the
cd-index for Eulerian posets.)

1.2 The flag /-vector and the flag L-vector

The introduction of another vector equivalent to the flag f-vector simplifies
calculations.

Definition 1 The flag {-vector of a graded partially ordered set P of rank
n + 1 is the vector ({s(P) : S C[1,n]), where

ts(P) = (-1~ 151 N~ (P).

To[In]\s



As a consequence,

fs(Py= 3 (r(P). (3)

TC[1,n]\S
The flag (-vector was first considered by Billera and Hetyei ([8]) while de-
scribing all linear inequalities holding for the flag f-vectors of all graded
partially ordered sets. It turned out to give a sparse representation of the
cone of flag f-vectors described in that paper.
A variant significant for Eulerian posets is the flag L-vector.

Definition 2 The flag L-vector of a graded partially ordered set P of rank
n + 1 is the vector (Lg(P) : S C[1,n]), where

7|
rs) = o= S (D) ey

TO[1,n]\S 2

Inverting the relation of the definition gives

fs(P) =251 N~ Lp(p).

TC[1,n)]\S

When the poset P is Eulerian, the parameters Lg(P) are actually the
coefficients of the ce-index of the poset P. The ce-index was introduced by
Stanley ([20]) as an alternative way of viewing the cd-index. The letter ¢
continues to stand for a+b; now let e = a—b. The ab-index of a poset can be
written in terms of ¢ and d if and only if it can be written in terms of ¢ and
ee. It is easy to verify that Lg(P) is exactly the coefficient in the ce-index
of P of the word ug = ujus---u, where u; = cif ¢ € 5, and u; = e if
t € S. Since the existence of the cd-index is equivalent to the validity of the
generalized Dehn-Sommerville equations, we get the following proposition.
(It can be proved directly from the definition of the flag L-vector, yielding an
alternative way to prove the existence of the cd-index for Eulerian posets.)
A subset S C [1,n] is even if all the maximal intervals contained in S are of
even length.

Proposition 1.2 The generalized Dehn-Sommerville relations hold for a
poset P if and only if Ls(P) = 0 whenever S is not an even set.

The generalized Dehn-Sommerville relations hold (by chance) for some
nonEulerian posets. A poset is Eulerian, however, if these relations hold for
all intervals of the poset.

Corollary 1.3 A graded partially ordered set is Eulerian if and only if
Ls([z,y]) = 0 for every interval [z, y] C P and every subset S of [1, p(z,y) — 1]
that is not an even set.



2 Half-Eulerian posets

In this section we find special points in the closed cone of flag vectors of
Eulerian posets. First consider the extremes of the closed cone of flag vectors
of all graded posets, found by Billera and Hetyei ([8]).

Definition 3 Given a graded poset P of rank n + 1, an interval I C [1,n],
and a positive integer k, D¥(P) is the graded poset obtained from P by
replacing every @ € P with rank in I by k elements x1,...,x; and by
imposing the following relations.

(i) If for z,y € P, p(x) € I and p(y) & I, then z; < y in D¥(P) if and
only if z < y in P, and y < x; in D¥(P) if and only if y < z in P.

(#1) If {p(z),p(y)} C I, then z; < y; in D§(P) if and only if i = j and
xr <yin P.

Clearly D%P is a graded poset of the same rank as P. Its flag f-vector
can be computed from that of P in a straightforward manner.

An interval system on [1,n] is any set of subintervals of [1, n] that form an
antichain (that is, no interval is contained in another). (Much of what follows
holds even if the intervals do not form an antichain, but the assumption
simplifies the statements of some theorems.) For any interval system Z on
[1,n], and any positive integer N, the poset P(n,Z, N) is defined to be the
poset obtained from a chain of rank n + 1 by applying va forall T €Z. It
does not matter in which order these operators are applied. (Different values
of N can be used for each interval I, but we do not need that generality
here.) Consider the sequence of posets for a fixed interval system Z as N
goes to infinity. Billera and Hetyei ([8]) showed that the normalized flag
vectors of such a sequence converge to a vector on an extreme ray of the
cone of flag vectors of all graded posets. More precisely,

Theorem 2.1 (Billera and Hetyei) Suppose I is an interval system of

k intervals on [1,n]. Then the vector

(Jim, e fs(P(n,Z,N)) 5 € [1,m])

generates an extreme ray of the cone of flag vectors of all graded posets of
rank n + 1. Moreover, all extreme rays are generated in this way.

Unfortunately, none of the posets P(n,Z,N) are Eulerian, and none
of these extreme rays are contained in the closed cone of flag vectors of



Eulerian posets. However some of the posets are “half-Eulerian”, and lead
us to extreme rays of the Eulerian cone.

For the interval system Z = {[1,1],[2,2],...,[n,n]}, abbreviate DZ(P)
as DP, and call this the horizontal double of P. Thus the horizontal double
of P is the poset obtained from P by replacing every « € P\ {0,1} with
two elements x1, z, such that 0 and 1 remain the minimum and maximum
elements of the partially ordered set, and x; < y; if and only if z < y in P.
(In the Hasse diagram of P, every edge is replaced by X.)

Definition 4 A half-Eulerian poset is a graded partially ordered set whose
horizontal double is Eulerian.

The flag f-vectors of P and its horizontal double are connected by the
formula f5(DP) = 2!5If¢(P). Thus,

Ls(DP) = t5(P). (4)

Applying the definition of Eulerian to the horizontal double of a poset
we get

Proposition 2.2 A graded partially ordered set P is half-Eulerian if and
only if for every interval [z,y] of P,

plz,y)—1

> DT Hillr ) = (14 (-1)PEY) /2.

i=1
Corollary 1.3 can now be restated for half-Eulerian posets.

Proposition 2.3 A graded partially ordered set is half-Eulerian if and only
if Ls([z,y]) = O for every interval [x,y] C P and every subset S of [1, p(z,y) — 1]
that is not an even set.

The flag vectors of the horizontal doubles of half-Eulerian posets span the
Eulerian subspace, the subspace defined by the generalized Dehn-Sommerville
equations. But the cones they determine may be different. Write Cg“ for
the closed cone of flag vectors of Eulerian posets of rank n+ 1, and C%‘H for
the closed cone of flag vectors of horizontal doubles of half-Eulerian posets.
We do not know if the inclusion Cjpt! C C2* is actually equality.

For which interval systems Z is P(n,Z, N) half-Eulerian?

Definition 5 An interval system Z on [1,n| is even if for every pair of
intervals I, J € Z the intersection I N J has an even number of elements. (In
particular, |I| must be even for every I € Z.)



Our goal is to show that the posets P(n,Z, N) are half-Eulerian if and
only if 7 is an even interval system. For this we need to understand the
intervals of the posets P(n,Z, N).

Proposition 2.4 The interval [z,y] C P(n,Z,N) is isomorphic to
P(p(z,y)—1,J,N), where T ={I —p(z) : I €L, I C [p(z) +1,p(y) —1]}.

Proof: Let p(z) = r and p(y) = s. Construct P(n,Z,N) by applying the
operators D}V for all I € T to a chain. Since the order of applying these
operators is arbitrary, we may choose to apply first those for which I is
not a subset of [r + 1,5 — 1]. At this point for every z' of rank r and y’
of rank s with ¢y’ > 2/, the interval [z',y'] is isomorphic to a chain of rank
p(z',y'). Applying the remaining operators DY leaves the elements of rank
at most 7 or of rank at least s unchanged, and has the same effect on [/, /]
as applying the operators D¥ . to a chain of rank p(z','). O

The effect on the flag f-vector of applying the operator Dﬁv to a poset
of rank n + 1 is given by the formula

fs(DY (P)) = { PRI ®)

This enables us to write an ¢-vector formula.

Lemma 2.5 For P a graded poset of rankn+1, S C [1,n], and N a positive
integer,

s(D7(P)) = Nts(P) — (N —1) Y (r(P). (6)
TUI=S5

Proof: From the definition of /g and equation (5),

ts(DY(P) = (=) YT (~1)FfR(DY (P))

RO[1,n]\S
= (=" BN (—)EINfR(P)
RO[Ln)\S
— (=)™ ST ()N - 1) fr(P)
RO[Ln)\S
RC[1,n]\1
= Neg(P)— (-1)"151 3 (—D)E(N — 1) fr(P).
RD[L,n]\S
RC[1,n]\I



By (3), the coefficient in —(—1)"~151 3= oy uns (—1)/F| (N —1) fr(P) of éx(P)

RC[L,n)\I

RSV C VI DR CE VLY

R2[1,n\S
RC[1,n]\(TVI)
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which is an empty sum if (7' U I) is not contained in S, zero if (T'UI) is
properly contained in S, and —(N — 1)(=1)*18l(—=1)ILn0\ST = (N — 1) if
(TTUI) = S. This gives the recursion of the lemma. &

From this we can determine which of the posets P(n,Z,N) are half-
Eulerian.

Proposition 2.6 Let Z be an interval system on [1,n].

1. If T 1s an even system of intervals, then for all N the partially ordered
set P(n,Z,N) is half-Eulerian.

2. If for some N > 1, P(n,Z,N) is half-Eulerian, then I is an even
system of intervals.

Proof: Using Lemma 2.5 we can show by induction on |Z| that for every
N, (¥ (P(n,Z,N)) is zero unless S is the union of some intervals of Z.
In particular, if Z is an even system of intervals, then ¢g (P(n,Z,N)) =0
whenever S is not an even set. The same observation holds for every interval
[z,y] C P(n,Z,N) as well, since by Proposition 2.4 [z,y] is isomorphic to
P(m, J,N) for some m < n and some even system of intervals 7. Therefore
the conditions of Proposition 2.3 are satisfied by P(n,Z,N) for every N, if
7 is an even system of intervals.

Now assume Z is a system of intervals that is not even. First consider
the case where Z contains an interval I, = [a,b] with b — a even (hence
Iy is odd). Let J = {I;, —a+ 1} = {[1,b —a + 1]}. For S nonempty,
fs(P(b—a+1,J,N))= N, so

E[l,b*(H»l}(P(b —a+1, jaN))
= > )"fp(Pb-a+1,T,N)
TC[1,b—a+1]
=1+ > (-DfIN=1-N.

TC[1,b—a+1]
T£0

So {1 p—qr)(P(b—a+1,J,N)) #0 for N > 1. Fix N > 1, and choose x
andyln P(n,I,N) with p(z) =a — 1, p(y) = b+ 1, and z < y. Then by



Proposition 2.4, £[y y(z4)-1)([7,Y]) = {1p—at1)(P(b—a+1,T,N)) # 0, with
I[1,b —a + 1]| odd. So P(n,Z,N) is not half-Eulerian.

Now suppose Z contains only even intervals, but some two intervals have
an odd overlap. Let I, = [a,d] and I; = [c,b], where a < ¢ < d < b and
d —a and b — ¢ are odd, but d —c is even. Then b — a is also even. We show
that we may assume no other interval of Z is in the union I, U I;. Suppose
I, = [e, f] is another interval of Z with [e, f] C [a,b] (and f — e is odd).
Since Z is an antichain, a < e < ¢ < d < f < b. If e —a is even, then
LOL =l fll=f—c+l=(f—e)+(c—a)— (d—a) + (d—c) + 1,
which is odd, because it is the sum of three odds and two evens. If e — a is
odd, then |I,NI,| = |[e,d]| =d—e+ 1= (d—a) — (e —a) + 1, which is odd
because it is the sum of three odds. Thus, if two intervals of Z have odd
intersection and their union contains a third interval of Z, then two intervals
of Z with smaller union have odd intersection.

So we may assume I, = [a,d] and I, = [c, b] have odd intersection, and
their union [a,b] contains no other interval of Z. Let J = {I, —a + 1,
I;,—a+1}={[l,d-a+1],[c—a+1,b—a+1]}. Then

fS(P(b_a_l_]-ajaN))
1 ifS=0

N? ifSn(Ip,—a+1)#0and SN(I;—a+1)#0
N  otherwise.

So
E[l,b—a-l—l}(P(b —a+1, JvN))
= > )"(P-a+1,T,N))

TC[L,b—a+1]
= S =pFiNt e Y ()Pl - N?)
TC[1,b—a+1] TC[1,c—a]
+ > (=DIT(N = N?)+ (1 — 2N + N?) = (1 — N).

TCld—a+2,b—a+1]

So {1 p—qr1)(P(b—a+1,J,N)) #0 for N > 1. Fix N > 1, and choose =
and y in P(n,Z, N) with p(z) =a — 1, p(y) = b+ 1, and « < y. Then by
Proposition 2.4, £[1 y(z,y)-1]([%,¥]) = {1 p—ar1)(P(b—a+1,T,N)) # 0, with
I[1,b —a+ 1]| odd. So P(n,Z,N) is not half-Eulerian. <&

As will be seen later, even interval systems give rise to extreme rays of

the cone of flag vectors of Eulerian posets. It is of interest, therefore, to
count them.
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Proposition 2.7 The number of even interval systems on [1,n] is (LNT/L2J)'

Proof: We define a one-to-one correspondence between even interval sys-
tems on [1,n] and sequences A = (A1, A\a,...,A,) € {—1,1}" satisfying
>idi=0if niseven and > ; \; = 1 if n is odd. Clearly there are (LnT/L2J)
such sequences.

For Z an even interval system, define A\(Z) = (A1, Ag,..., \,) € {—1,1}",
where \; = (—1)¢ if 4 is an endpoint of an interval of Z, and \; = (—1)"1
otherwise. (Note that for an even interval system, no number can be an
endpoint of more than one interval.) For Z an even interval system, summing
(—1)¢ over the endpoints of intervals gives 0. So

n n

YAo= Y (=Dt Y 2(-1y

i=1 i=1 7 endpoint
of interval

_ i(_l)i_l_ 0 ifn is even
e T 11 ifnisodd

On the other hand, given a sequence A = (A1, Ag,...,\,) € {—1,1}"
satisfying > ; \; = 0 if n is even and ) ; \; = 1 if n is odd, construct an even
interval system as follows. Let s1 < s < --- < s be the sequence of indices
s for which A\; = (—1)°. Then > ,(=1)"" ! = SF A = X0 (1) +
Z;?:l 2(—1)%, so Z?Zl(—l)sf = 0. Thus the sequence of s;’s contains the
same number of even numbers as odd. Construct an interval system Z =
{la1, b1], [a2,b2], ..., [am,bm]} (2m = k) recursively as follows. Let a1 = s1
and let by = s; where j is the least index such that s; and s; are of opposite
parity. Then Z = [aq, b1]UZ’, where 7' is the interval system associated with
sy < 83 < 84 < -+ < s with by = s; removed. Clearly [a;,b1] is of even
length. If [a1, b1]N[as, b;] # 0 for some interval [a;, b;] of Z', then a; < by, so by
the choice of by, a; has the same parity as a;. Thus [a1, b1] N [a;, b;] = [as, b1]
is of even length. Furthermore, b; and by are of the same parity, since a; and
aj are, so again by the choice of by, b; > b;. So the interval [a;, b;] is not
contained in the interval [a;, b1]. The interval system {[a,, b,]}, is even, so
by induction Z is an even interval system.

These constructions are inverses, giving the desired bijection. <&

Recall that Billera and Hetyei ([8]) found extremes of the cone of flag
vectors of graded posets as limits of the normalized flag vectors of the
posets P(n,Z,N). The next proposition follows easily by induction from
Lemma 2.5.
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Proposition 2.8 Let T = {I;,Is,...,I;;} be a system of k > 0 intervals
on [1,n]. Then

lim Nies (P(n,Z, N))

N—o0 k

_ i(—l)"\{lsm--«ijs'ﬂ:IiIU"'UI%:SH'
j=0

Write fs(P(n,Z)) = limy .o fs(P(n,Z,N))/NZl. The vector these
numbers form (as S ranges over all subsets of [1,n]) is not the flag f-
vector of an actual poset, but it is in the closed cone of flag f-vectors
of all graded posets. We call the symbol P(n,Z) a “limit poset” and re-
fer to the flag vector of the limit poset. If Z is an even interval system,
then (fs(P(n,Z)) : S C [1,n]) is in the closed cone of flag vectors of
half-Eulerian posets. To get FEulerian posets the horizontal double oper-
ator is applied to P(n,Z,N). The vector (fs(DP(n,Z)) : S C [1,n]) is
defined as a limit of the resulting normalized flag f-vectors, and satisfies
fs(DP(n,T)) = 215 f5(P(n,T)). It lies in the cone CJ5™ of flag vectors of
doubles of half-Eulerian posets, a subcone of the Eulerian cone.

Recall (equation (4)) that the {-vector of a poset P equals the L-vector of
its horizontal double DP. The same holds after passing to the limit posets.
Thus, Proposition 2.8 gives

)

k
Ls(DP(n,I)) = 3 (~1) ‘{1 <ip <o <ij <k LU UL =S}
j=0

where T = {I1, Is,..., It}

We look at the associated cd-indices of the “doubled limit posets.” Think
of a word in ¢ and d as a string with each ¢ occupying one position and each
d occupying two positions. The weight of a cd-word w is then the number of
positions of the string. Associated to each ecd-word w is the even set S(w)
consisting of the positions occupied by the d’s.

Proposition 2.9 For each cd-word w with k d’s and weight n, there exists
an even interval system T, for which the cd-index of DP(n,T,) is 2Fw.

Proof: Fix a cd-word w with &k d’s and weight n. Write the elements of
S(w) in increasing order as i1, i1 + 1, 2, i2 + 1, ..., i, ix + 1, and let Z,,
be the interval system {[i1, 41 + 1], [i2,i2 + 1], ..., [iK, 3% + 1]}. Let & = 2Fw.
Rewrite the cd-polynomial ® as a ce-polynomial. Recall from Sections 1.1

12



and 1.2 that c=a+b,d = ab+ba, and e = a — b, so d = (cc — ee) /2. Thus,
® is rewritten as a sum of 2* terms. Each is the result of replacing some
subset of the d’s by cc, and the rest by ee; the coefficient is +1, depending
on whether the number of d’s replaced by ee is even or odd. Thus

2kw = Z (=1)Vlwy,

JC[L,K]

where wy = wiws - - - wy,, with Wi, = Wi, 41 =€ if j € J and the remaining
w;’s are c¢. By the L-vector version of Proposition 2.8, this is precisely the
ce-index of DP(n,Z,). &

In [20] Stanley first found for each cd-word w a sequence of Eulerian
posets whose normalized cd-indices converge to w. Our limit posets are
closely related to Stanley’s, but this particular construction highlights the
important link between the half-Eulerian and Eulerian cones.

Before turning to inequalities satisfied by the flag vectors of Eulerian
posets, we consider the question of whether the two cones C%H and Cg“
are equal. For low ranks the two cones are the same, as seen below. We
know of no example in any rank of an Eulerian poset whose flag vector is
not contained in the cone C%‘H of doubled half-Eulerian posets. To look for
such an example we turn to the best known examples of Eulerian posets,
the face lattices of polytopes. In [20] Stanley proved the nonnegativity of
the cd-index for “S-shellable regular CW-spheres”, a class of Eulerian posets
that includes all polytopes. By a result of Billera, Ehrenborg, and Readdy
([7]), the lattice of regions of any oriented matroid also has a nonnegative cd-
index. (Some entries in the cd-index are nonnegative for all Eulerian posets;
see [3] for details.) Proposition 2.9 implies that nonnegative cd-indices (and
the associated flag vectors) are in the cone generated by the cd-indices (flag
vectors) of the doubles of limit posets associated with even interval systems.

Corollary 2.10 C%H contains the flag vectors of all Eulerian posets with
nonnegative cd-indices. This includes the face lattices of polytopes and the
lattices of regions of oriented matroids.

Conjecture 2.11 The closed cone C?H of flag vectors of Eulerian posets
s the same as the closed cone C%‘H of flag vectors of horizontal doubles of
half-Eulertan posets.

3 Inequalities

Throughout this section we use the following notation.
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Definition 6 The interval system Z[S| of a set S C [1,n] is the family of
intervals Z[S] = {[a1,b1],...,[ak, bk]}, where S = [a1,b1] U --- U [ag, bx] and
bi—1 < a; — 1 for i > 2. In other words, Z[S] is the collection of the maximal
intervals contained in S.

Note that S is an even set if and only if Z[S] is an even interval system.

The following flag vector forms can be proved nonnegative by writing
them as convolutions of basic nonnegative forms ([10, 15]). (See Appendix
B.) The issue of whether they give all linear inequalities on flag vectors
of Eulerian posets was raised by Billera and Liu (see the discussion after
Proposition 1.3 in [10]). We give here a simple direct argument for their
nonnegativity that avoids convolutions.

Proposition 3.1 (Inequality Lemma) Let T' and V be subsets of [1,n]
with T C V', such that for every [ € Z[V], [INT| < 1. Write S =[1,n]\ V.
For P any rank n + 1 Eulerian poset,

3 (—2) "\l s ur(P) > 0.

RCT

Equivalently,

(DT ST Lop) > 0.
TCQCV

Proof: The idea is that since no two elements of T" are in the same gap of
S, elements with ranks in 7' can be inserted independently in chains with
rank set S. For C an S-chain (i.e., a chain with rank set S) and t € T, let
nt(C) be the number of rank ¢ elements € P such that C U {z} is a chain
of P. Since every interval of an Eulerian poset is Eulerian, ni(C') > 2 for all
C and t. So

S (-2)"VH fsp(P) = Do (=2)VE S ] m(©)

RCT RCT C an S-chain teR
= Z Z (_2)IT\R\ H n(C)
C an S-chain RCT teER

= Z H("t(c) —2)>0.

C an S-chain teT

So the flag vector inequality is proved. The second inequality is simply the
translation into L-vector form. <&

Here are some new inequalities.
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Theorem 3.2 Let 1 < ¢ < j < k < n. For P any rank n + 1 Eulerian
poset,

fi(P) = 2fi(P) — 2fx(P) + 2f;(P) > 0.

Proof: First order the rank j elements of P in the following way. Choose
any order, G1, Go, ..., Gy, for the components of the Hasse diagram of the
rank-selected poset P; ;1. For each rank j element y of P, identify the
component containing y by y € Gy(,). Order the rank j elements of P in
any way consistent with the ordering of components. That is, choose an
order yi, y2, ..., yr such that y; < y; implies g(ys) < g(y¢)-

A rank 7 element = belongs to y, if ¢ is the least index such that z < y,
in P. Write I, for the number of rank i elements belonging to y,, and I('I for
the number of rank ¢ elements = such that x < y,4, but # does not belong
to yg. Similarly, a rank k element z belongs to y, if g is the least index such
that y, < z in P. Write K, for the number of rank k elements belonging
to yg, and K,’I for the number of rank £ elements z such that y, < z, but 2
does not belong to y,. Note that I, + I,’I > 2 and K, + K('I > 2, since P is
Eulerian. A flag x < z belongs to y, if * < y, < z and q is the least index
such that either z < y, or y, < 2.

Let F' = fir(P) — 2fi(P) — 2fx(P) + 2f;(P). Let Fy be the contribution
to F' by elements and flags belonging to y,. Thus,

Fy =LK, + LK, + LK, — 21, — 2K, + 2.

If I[I > 2, then Fy = I, (K, "‘KZ] —2)+ (I(’I —2)Kq+2>2.

IfI,’I = K(’I =0, then F, = (I, — 2)(K; —2) —2 > 2.

In all other cases it is easy to check that F, > 0.

Suppose that the rank j elements in component Gy are ys, Ys41, ---, Yt
Then I, = K. = 0, so F; > —2. Furthermore, I; = K; = 0, because any
rank i element x related to y; must also be related to at least one other rank
J element, and it is in the same component. That rank j element has index
less than ¢, so « does not belong to y;. This in turn implies I] > 2, so F; > 2.
For all ¢, s < g < t, either I,’I > 0 or K,’I > 0, by the connectivity of the
component, so Fy, > 0. Thus Zf]:s F, > 0. This is true for each component
Gy, s0 F' =370 Fy > 0. <&

These inequalities can be used to generate others by convolution (see
Appendix B.)

Evaluating the flag vector inequalities of Proposition 3.1 for the horizon-
tal double DP of a half-Eulerian poset P gives the inequalities, for .S and T°
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satisfying the hypotheses of Proposition 3.1,

S (1) fs R(P) > 0. (7)

RCT

These inequalities are valid not just for half-Eulerian posets but for all
graded posets. The proof of Proposition 3.1 uses only the fact that in every
open interval of an Eulerian poset there are at least two elements of each
rank. If the proof is rewritten using the assumption that in every open
interval there is at least one element of each rank, the inequalities (7) are
proved for all graded posets.

Similarly, the flag vector inequalities of Theorem 3.2 give inequalities for
half-Eulerian posets,

fi(P) — fi(P) — fe(P) + f;(P) > 0.

The proof of Theorem 3.2 can be modified in the same way to show these
inequalities are valid for all graded posets. The first instance of this class of
inequalities was found by Billera and Liu ([10]).

We conjecture that all inequalities valid for half-Eulerian posets come
from inequalities valid for all graded posets. Inequalities for half-Eulerian
posets are to be interpreted as conditions in the subspace of R?" spanned
by flag vectors of half-Eulerian posets, but we are describing them in R2".
Giving inequalities using linear forms in the flag numbers fs over R?", the
statement is as follows.

Conjecture 3.3 Every linear form that is nonnegative for the flag vectors
of all half-Eulerian posets is the sum of a linear form that is nonnegative for
all graded posets and a linear form that is zero for all half-Eulerian posets.

4 Extreme Rays and Facets of the Cone

We have described some points in the Eulerian cone Cg“ and some inequal-
ities satisfied by all points in the cone. We turn now to identifying which of
these give extreme rays and facets.

If 7 is an even interval system, then (fs(P(n,Z)): S C [1,n]) is on an
extreme ray in the closed cone of flag vectors of all graded posets, and is in
the subcone of flag f-vectors of half-Eulerian posets. Therefore it is on an
extreme ray of the subcone. By Proposition 2.7 this gives (L"72 J) extreme
rays for the rank n + 1 cone.

16



Proposition 4.1 For every even interval system I, the flag vector of the
limit poset P(n,Z) generates an extreme ray of the cone of flag vectors of
half-Eulerian posets.

What does this say about the extreme rays of the cone of flag vectors
of Eulerian posets? For every even interval system Z, the flag vector of
DP(n,T) lies on an extreme ray of the subcone C%'H, but we cannot conclude
directly that it lies on an extreme ray of the cone Cg“. A separate proof is
needed.

For the following proofs, we use the computation of £o(P(n,Z)) (and
Lo(DP(n,T))) from the decompositions of @ as the union of intervals of 7

(Proposition 2.8).

Theorem 4.2 For every even interval system I, the flag vector of the dou-
bled limit poset DP(n,Z) generates an extreme ray of the cone of flag vectors
of Eulerian posets.

Proof: We work in the closed cone of L-vectors of Eulerian posets. The
cone of L-vectors of Eulerian posets is contained in the subspace of R2"
determined by the equations Lg = 0 for S not an even set. To prove that
the L-vector of DP(n,Z) generates an extreme ray, we show that it lies on
linearly independent supporting hyperplanes, one for each nonempty even
set V in [1,n]. Fix an even interval system Z. For each nonempty even
set V' C [1,n], we find a set T" such that T and V satisfy the hypothesis of
Proposition 3.1 and Y rcgcy Lo(DP(n,I)) = 0.

Case 1. Suppose V is the union of some intervals in Z. Let I, Ia,
..., Iy be all the intervals of Z contained in V. Set T" = (. Then for
each subset J C [1,k], the corresponding union of intervals contributes
(—1)V! to Lo(DP(n,T)), for Q = UjesIj. Thus Ypcocy Lo(DP(n,I)) =
ZJg[l,k}(—l)m = 0.

Case 2. If V' is not the union of some intervals in Z, let W be the union
of all those intervals of Z contained in V. Choose t € V\W, and set T' = {t}.
For Q CV, Lo(DP(n,Z)) =0 unless Q@ C W. But if Q C W then ¢ cannot
be in Q. So Y rcocv Lo(DP(n,I)) = 0.

Now > rcgcy Lo(P) = 0 determines a supporting hyperplane of the
closed cone of L-vectors of Eulerian posets, because the inequality of Propo-
sition 3.1 is valid, and the poset DP(n,Z) lies on the hyperplane. The
hyperplane equations each involve a distinct maximal set V', which is even,
so they are linearly independent on the subspace determined by the equa-
tions Lg = 0 for S not an even set. So the doubled limit poset DP(n,Z) is
on an extreme ray of the cone. &
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Note how far we are, however, from a complete description of the extreme
rays.

Conjecture 4.3 For every positive integer n, the closed cone of flag f-
vectors of Eulerian posets of rank n + 1 s finitely generated.

Lemma 4.4 (Facet Lemma) Assume 3 gcp ,1a9Lq(P) > 0 for all Eu-
lerian posets P of rank n + 1. Let M C [1,n] be a fized even set. Sup-
pose for all even sets R C [1,n], R # M, there ezists an interval system
Z(R) consisting of disjoint even intervals whose union is R and such that
>ocnn 2@lo(P(n,Z(R))) = 0. Then Y gcn na@Lle(P) =0 determines a
facet of the closed cone of L-vectors of Eulerian posets.

(Note that Z(R) need not be Z[R].)

Proof: The dimension of the cone CZ ™! equals the number of even subsets (a
Fibonacci number). So it suffices to show that the vectors (£g(P(n,Z(R))))
= (Lo(DP(n,Z(R)))) are linearly independent. To see this, note that for
every set @ not contained in R, {go(P(n,Z(R))) = 0. By the disjointness
of the intervals in Z(R), there is a unique way to write R as the union of
intervals in Z(R). So by Proposition 2.8, ({g(P(n,Z(R)))) = (—1)F®)
Thus, R is the unique maximal set @ for which ({g(P(n,Z(R)))) # 0. So
the L-vectors of the posets DP(n,Z(R)), as R ranges over sets different from

M, are linearly independent. <

Proposition 4.5 The inequality 3 oc(1 Lo(P) > 0 (or, equivalently,
fo(P) > 0) determines a facet of the closed cone of L-vectors of Eulerian
posets of rank n + 1.

Proof: Apply the Facet Lemma 4.4 with M = (). For a nonempty even set
R, the interval system Z[R| of R is nonempty, so > ocr n) lo(P(n, Z[R])) =

> serr (DT =0. %

Theorem 4.6 Let V be a subset of [1,n] such that every I € Z[V] has
cardinality at least 2, and every I € Z[[0,n + 1]\ V] has cardinality at most
3. Assume that M is a subset of V' such that every [a,b] € Z[V] satisfies the
following:

(1) MnNla,b] =0, la,a +1], or [b—1,b].
(i) Ifa & M thena—2€ {—-1}UM.
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(idi) Ifb & M then b+2 € {n+2} U M.

Then
(-2 37 Lo(P) 20 (8)
MCQCV
determines a facet of Cg“. Furthermore, if we strengthen (i) by also requir-

ing M N[a,a+2] =0 for every [a,a + 2] € Z[V], then distinct pairs (M, V)
give distinct facets.

Proof: If M = (), then conditions (i) and (iii) force V. =[1,n] (or V =0
if n < 1). The resulting inequality, 220C[L,n] Lo(P) > 0, gives a facet, as
shown in Proposition 4.5. Now assume that M # 0.

Step 1 is to prove that inequality (8) holds for all Eulerian posets. Note
that Z[M] is a nonempty collection of intervals of length two. From each
such interval choose one endpoint adjacent to an element of [0,n + 1]\ V.
Let T be the set of these chosen elements. The Inequality Lemma 3.1 ap-
plies to these T' and V' because each interval of V' contains at most one
interval of Z[M], and hence at most one element of T'. The resulting in-
equality is (—1)T1 Y rcocy Lo > 0. Now Lg(P) = 0 for all P if Z[Q)]
contains an odd interval. So we can restrict the sum to even sets . Since
@ must be contained in V, such a () must contain the intervals of M. Thus,
(—1)|MV2 ZMgQgV Lo(P) = 0.

Step 2 is to prove that if I C [1,n] is an interval of cardinality at least 2
and I contains an element ¢ not in V', then I contains an element adjacent
to an interval of M. If an interval from Z[V] ends at ¢ — 1, then either
i—1l€ Mori+1e& M by (iii) (since i +1 < n+2). Similarly, if an interval
from Z[V] begins at i + 1, then either i —1 € M or i +1 € M. So assume
no interval from Z[V] begins at ¢ — 1 or ends at ¢ + 1. The hypothesis of
the theorem states that every interval from Z[[0,n 4 1] \ V] has cardinality
at most three. Thus the interval [¢ — 1,7 + 1] belongs to Z[[0,n + 1] \ V.
Hence i —2 € {-1} UV and i +2 € {n +2}UV. If i —2 = —1 then
I D [i,i + 1] = [1,2], condition (i7) applied to a = 3 yields 3 € M, and
2 € I is adjacent to 3. The case when ¢ + 2 = n + 2 is dealt with similarly.
Finally, if i — 2 and ¢ 4+ 2 are both endpoints of intervals from Z[V], then,
since i ¢ M U{—1,n + 2}, condition (¢i) applied to a = i + 2 and condition
(7it) applied to b =i —2 yield i +2 € M and i —2 € M. Either i — 1 or
¢ + 1 belongs to I and each of them is adjacent to an element of M.

Recall that for Z an even interval system, the vector ({g(P(n,I)) :
Q C [1,n]) is in the closed cone of ¢-vectors of half-Eulerian posets. Step
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3 is to show that for each even set R # M, there exists an even interval
system Z with U;ez] = R such that (—1)M1/2 Y mcocv lo(P(n,I)) = 0.

Let R be an even set not equal to M. If M ¢ R, then for every Q
containing M, {o(P(n,Z[R])) = 0. Now suppose M C R, but R Z V. Let
I be an interval of Z[R] such that I ¢ V. Then I contains an element
adjacent to an interval of M. Since M C R and [ is a maximal interval in
R, INM # (. Thus every union of intervals of Z[R] containing M must
contain / and thus an element not in V. So 3"y cqcy o(P(n, Z[R])) =0,
because all terms are zero.

Finally, suppose M C R C V and R # M. Let Z be the interval system
of R consisting only of intervals of length 2. Then every interval of M is in
Z. This is because every interval of M is of length 2, with at least one of
its endpoints adjacent to an element not in V. So 3" ycqcv o(P(n, 1)) =
S rmcrcr(—1)V1 =0, since R # M implies T # Z[M].

By the Facet Lemma 4.4, the inequality (—1)™/2 Y, cocy Lo(P) > 0
gives a facet of C2 1,

Now we show that under the added condition M N{a, a+ 2] = 0 for every
[a,a + 2] € Z[V], the facets obtained are distinct.

Note that two (M, V') pairs can give the same inequality only if they have
the same M, because Ly, is included in the linear form for (M, V), and M
is the minimal (by set inclusion) set for which Ly, is in the form. Now for
fixed M, we show that (M, V) and (M, Vs) give distinct linear inequalities
when Vi # V5. Since the sets V; and V5 are different, there is an interval
[a, b] such that [a,b] occurs in exactly one of Z[V;i] or Z[V>]. Let [a,b] be
a maximal interval with this property. Without loss of generality assume
[a,b] € Z[V4]. Then [a, b] is contained in no interval of Z[V3].

Case 1. M N[a,b] = 0. Then for every i, a < i < b — 1, the term
Ly iy1jum occurs in the inequality for (M, V7). At least one of these terms
does not occur in the inequality for (M, V2), because [a,b] Z Va.

Case 2. M Na,b] = [a,a + 1]. Since M C V5 and [a,b] £ V2, b > a+ 1.
By the strengthened hypothesis on M, b > a 4+ 3. Then for every i, a + 2 <
i <b—1, the term Ly; ;. 1)y occurs in the inequality for (M, V7). At least
one of these terms does not occur in the inequality for (M, V), because
[a, b] Z V2.

Case 3. M N[a,b] = [b— 1,b]. The proof is similar to Case 2.

Thus, with the condition M N[a,a + 2] = 0 for every [a,a + 2] € Z[V],
the facets given by the theorem are all distinct. <&

Theorem 4.6 may be restated and interpreted in terms of the convolution
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of chain operators. We refer the interested reader to Appendix B for that
approach.

With the aid of PORTA ([14]), we calculated the Eulerian cone for rank
at most 7. Our input files, the output generated by PORTA, and a BTEX
file identifying the valid inequalities obtained may be found at [5]. It turns
out that Theorems 4.2 and 4.6 give all the extremes and facets of the cone
for rank at most 6. This fails at rank 7; there the facet inequalities all
come from Proposition 3.1 and Theorem 3.2, but new poset constructions
are needed for the extreme rays.

Theorem 4.7 For rank n+ 1 < 6, the closed cone Cg"'l of flag vectors of
Eulerian posets is finitely generated. It has (Ln72J) extreme rays, all gen-
erated by the flag vectors of the limit posets DP(n,T) for I even interval
systems on [1,n]. It has (Ln72J) facets, all given by Proposition 4.5 and
Theorem 4.6.

Theorem 4.8 (i) The cone Cg 18 finitely generated, with 24 extreme rays.
Twenty of the extreme rays are generated by the flag vectors of the limit
posets DP(n,T) for I even interval systems on [1,6].

(ii) The cone C’g has 23 facets. Fifteen of the facets are given by the
inequalities of Theorem 4.6. Four additional facets come from the Inequality
Lemma 3.1. The remaining four come from Theorem 3.2.

The four special extreme rays of the rank 7 Eulerian cone have corre-
sponding rays in the half-Eulerian cone. The generators for the half-Eulerian
cone are all obtained by adding the flag vectors of limit posets associated
with noneven interval systems. The summands do not satisfy the conditions
of Proposition 2.3 for half-Eulerian posets, but the sum does. The calcula-
tions are easily done in terms of the ¢-vector, using Proposition 2.8. Specific
sequences of half-Eulerian posets have been constructed whose flag vectors
converge to these four extremes. The half-Eulerian posets are obtained by
“gluing together” posets for each summand. These are then converted to
Eulerian posets by the horizontal doubling operation. Below are the sums
of limit posets used. Descriptions of the half-Eulerian posets are found in

Appendix A.
Extreme 1: P (6,{[1,2],[2,6]} + {[2,5],[5,6]})
Extreme 2: P (6,{[1,3],[3,4],[4,6]} +{[1,2],[2,3]} +{[4,5],[5,6]})
Extreme 3: P (6,{[1,2],[3,4],[4,5]} +{[3,5],[5,6]} +{[1,2],[2,5]})
Extreme 4: P (6,{[1,2],[2,4]} +{[2,5],[5,6]} + {[2,3],[3,4],[5,6]})
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Note that for rank at most 7, the two cones C%H and Cg“ are equal,
because the generators of extreme rays specified in Theorems 4.7 and 4.8
are horizontal doubles of half-Eulerian limit posets.

Perhaps all the extreme rays of the half-Eulerian cone (if not the Eulerian
cone) can be obtained by gluing together Billera-Hetyei limit posets.

A complete description of the closed cone of flag vectors of Eulerian
posets remains open, and, as mentioned before, the cone is not even known
to be finitely generated. We do not know if convolutions of the inequalities
of Proposition 3.1 and Theorem 3.2 completely determine the cone. A better
understanding of the construction of extreme rays as sums of Billera-Hetyei
limit posets would be valuable.

The study of Eulerian posets is motivated in part by questions about
convex polytopes. Is the cone of flag vectors of all Eulerian posets the same
as or close to the cone of flag vectors of polytopes? The answer is no. The in-
equalities of Proposition 3.1 can be strengthened considerably for polytopes.
The proof of Proposition 3.1 uses only the fact that in an Eulerian poset each
interval has at least two elements of each rank. For convex polytopes, each
interval is at least the size of a Boolean algebra of the same rank. Thus, for
example, where Proposition 3.1 gives that fi479(P) — 2f179(P) > 0 for Eu-
lerian posets, for convex polytopes the inequality fi1479(P) — 20 f179(P) > 0
holds, because the rank 6 Boolean algebra has (g) = 20 elements of rank 3.
For ranks 4 through 7, we have verified that none of the extreme rays of the
Eulerian cone is in the closed cone of flag vectors of convex polytopes.

Appendix A Some half-Eulerian limit posets of rank 7

Here are the constructions of half-Eulerian posets whose doubles give Ex-
tremes 1, 2 and 3 of Cg. Extreme 4 is the dual of Extreme 3.
In the following, C7 denotes a chain of rank 7.

A1 P(6,{[1,2],[2,6]} + {[2,5],[5,6]})

Take Df\lf,z]ngﬁ} (C") and Df\lf,s]Df\sf,e] (C7). Identify the elements of both
posets at rank 1 and at rank 6. Figure 1 represents the resulting poset for
N =2.
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Figure 1: P (6,{[1,2],[2,6]} + {[2,5],[5,6]})

A.2 P(6,{[1,3],[3,4],[4,6]} + {[1,2], 2, 3]} + {[4,5],5,6]})
Take

PY(N) = D yDfsyDfigDjy5 (CT)
PH(N) = Df\lfz}lDf\{vﬁ}DgA](CU, and
PHI(N) = Df\{ﬂDgﬂng”ﬁ](CU.

Identify the elements of P/(IN) with the elements of P/(IN) at ranks 1,4, 5,
and 6. Identify the elements of P/(N) with the elements of P/I/(N) at
ranks 1,2,3, and 6. Figure 2 represents the resulting poset for IV = 2.
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Figure 2: P (6, {[1,3],[3,4],[4,6]} + {[1,2],[2,3]} + {[4,5],[5,6]})

A3 P(6,{[1,2],[3,4],[4,5]} + {[3,5],[5,6]} + {[1, 2], [2,5]})
Take

PI(N) = Dg;]ngj]IngDgg]l(07) (Figure 3)
2 .

P(N) = D{}IDf 5D 6(C7) (Figure 4), and
2 _ .

PUI(N) = DYIDL VD g(C7)  (Figure 5).

Identify the elements of P!(IN) with the elements of P!/(IV) at ranks 1,2,
and 6. Identify the elements of P/(IN) with the elements of P/!/(N) at rank
6. Figure 6 represents the resulting poset for N = 2.
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Figure 4: P (2)
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Figure 5: PH1(2)
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Figure 6: P (6,{[1,2],[3,4],[4,5]} + {[3,5], [5,6]} + {[1,2],[2,5]})
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Appendix B Convolution of inequalities

As in Billera and Liu ([10]) we view the flag f-vector as a vector of chain
operators (f"“ SC [l,n]) here f21(P) = fs(P) if P is a graded poset
of rank n+1 and 0 otherwise. The following multiplication of chain operators
f& (n>1,8 C[l,n—1]) was introduced by Kalai in [15] and studied for
Eulerian posets by Billera and Liu in [10]:

s fr= f%?:n}u (T+m)"

It is straightforward that given a pair of valid linear inequalities

F = Z asfg' >0 and G = Z bsfg >0
S5C[1,m—1] TC[1,n-1]

that hold for a hereditary class of graded posets, the linear inequality F'G > 0
is also valid for the same class. It was observed by Billera and Liu in [10,
Proposition 1.3] that for the class of all graded posets the converse holds as
well: if FG > 0 is a valid inequality, then either both ¥ > 0 and G > 0
are valid inequalities, or both —F > 0 and —G > 0 are valid inequalities.
It is easy to verify that the same equivalence is valid also for the class of
(half-)Eulerian posets.

Proposition B.1 Consider F' =} gy m_yjasf™ and G = Ypcpn_1)bsf5-
For these, FG > 0 holds for all half- Euleman posets if and only if ezther both
F >0 and G >0 or both —F > 0 and —G > 0 hold for all half-Eulerian
posets. The analogous statement is true for Eulerian posets.

Only the “only if” implication is not completely trivial. In the half-Eulerian
case, all we need to observe is that for a pair (P, @) of half-Eulerian posets
the poset P o @ obtained by putting all elements of ) above all elements
of P, and identifying the top element of P with the bottom element of @,
is half-Eulerian. Moreover, if for posets P, P>, and @ and forms F' and G,
F(Pl) > 0, F(P2) < 0, and G(Q) > 0, then FG(Pl o Q) = F(Pl)G(Q) >0
and FG(Pyo Q) = F(P,)G(Q) < 0. The same argument works for Eulerian
posets using D%p(P)}(P o @) instead of P o Q.

B.1 Unique factorization

According to [10, Theorem 2.1] the associative algebra generated by all
chain operators (whose domain is taken to be the class of all graded posets)
is the free polynomial ring in variables { fé : ¢ > 1}. If we take the
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degree of the variable f(g to be ¢, then linear combinations of the form
F =3 sci1,m-1asf§" become homogeneous polynomials. Hence, as noted
by Billera and Hetyei in [8], one can use a result of Cohn in [13, Theorem 3]
that the semigroup of homogeneous polynomials of a free graded associative
algebra has unique factorization. The validity of an inequality may thus be
checked factor-by-factor.

For Eulerian and half-Eulerian posets, it is advisable to convert our
expressions into the flag-¢ or flag-L forms, respectively. Straightforward
substitution into the definition shows

Usly =gy and L§Lp=2Lg5n,
This means that when we write [ug] = L' as the coefficient of the ce-word

ug, the convolution of the forms > gc [ 1) as[us] and Yy, q) brlur] is
the fOI‘m 2 ng[l,m—l] ZTg[l,n—l] aSbT[USCUT]
Consider the free associative algebra R(c,e) generated by the letters c

and e. Given a homogeneous form F =} g )@ LT set

1 n+1
(F) = 3 > asugec.
SC[1,n]
Evidently the linear map ¢ is a ring isomorphism between the ring of chain
operators (with the convolution operation) and the left ideal R(c,e)c of
R(c,e) (with concatenation of letters as multiplication). In terms of this
isomorphism we may rephrase [10, Proposition 3.2] as follows:

Proposition B.2 Let I¢ be the two-sided ideal of all forms 2231,74 ang+1
vanishing on all Eulerian posets. Then ¢(Ig) is the ideal of R{c,e)c gener-

ated by {[e***1c] : k > 0}.

This statement is a direct consequence of Corollary 1.3. The quotient of
R(c, e)c by the ideal ¢(I¢) is the left ideal R(c, ee)c of the free noncommu-
tative algebra R(c, ee). By Cohn’s result ([13, Theorem 3]) the ring R{c, ee)
has unique homogeneous factorization. Given an arbitrary homogeneous
expression E € R(c,ee)c, the homogeneous factors ¢ are uniquely identi-
fiable in its unique homogeneous factorization. Hence E may be uniquely
written as a product of homogeneous polynomials from R(c, ee)c that are
irreducible in R{c,ee)c. The analogous observations may be also made in
the half-Eulerian setting, and we have the following unique factorization.

Proposition B.3 Every homogeneous linear form ZSC[I,n] asﬁgﬂ or

ng[l,n} aSLZ'H, where S ranges over only even sets, can be uniquely written
as a product of irreducible expressions of the same kind.
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B.2 Convolution of facet inequalities

Billera and Hetyei also showed in [8] that for the class of all graded posets
the product of two facet inequalities is almost always a facet inequality,
every exception being a consequence of the equalities

SIS = Bt = (A = fm) + g

In terms of convolutions, Proposition 3.1 states that the product of valid
inequalities of the form f > 0 and f]* —2ff > 0 is a valid inequality for
all Eulerian posets. Theorem 4.6 describes a subclass of these products that
yield facet inequalities. Using ideas extracted from the proof, one can show
the following, somewhat strengthened statements.

Proposition B.4 If F > 0 defines a facet of CA™, then F( {6+1_2féc+1) >
0 defines a facet of Cg+k+2.

Proposition B.5 If F' > 0 defines a facet of CZH, and F' can be written
as
F= Y agLit!
SCin]
where S ranges over only even sets that contain n, then Ff(gchl > 0 and

Ff&f& > 0 define facets of C2T*2 and C23, respectively.

It seems to be difficult, however, even in the case of these simple fac-
tors, to predict which products yield facet inequalities. For example (f7 —
2f)f5 = (Ff —2f5) + (- 2f3)(f —2/3) > 0 does not define a facet of
C2, while it can be shown that (f} — 2f5’)f5’ > 0 defines a facet of C$.
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