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tThe 
losed 
one of 
ag ve
tors of Eulerian partially ordered setsis studied. A new family of linear inequalities valid for Eulerian 
agve
tors is given. Half-Eulerian posets are de�ned. Certain limit posetsof Billera and Hetyei are half-Eulerian; they give rise to extreme raysof the 
one for Eulerian posets. Other extreme posets are formed from
onsideration of the 
d-index. The 
one of Eulerian 
ag ve
tors is
ompletely determined up through rank seven.1 Introdu
tionThe study of Eulerian partially ordered sets (posets) originated with Stanley([18℄). Examples of Eulerian posets are the posets of fa
es of regular CWspheres. These in
lude fa
e latti
es of 
onvex polytopes, the Bruhat orderon �nite Coxeter groups, and the latti
es of regions of oriented matroids.(See [11℄ and [12℄.)The 
ag f -ve
tor (or simply 
ag ve
tor) of a poset is a standard pa-rameter 
ounting 
hains in the partially ordered set by ranks. In the lasttwenty years there has grown a body of work on numeri
al 
onditions on 
agve
tors of posets and 
omplexes, espe
ially those arising in geometri
 
on-texts. Early 
ontributions are from Stanley on balan
ed Cohen-Ma
aulay
omplexes ([17℄) and Bayer and Billera on the linear equations on 
ag ve
-tors of Eulerian posets ([4℄). For an extensive survey of inequalities on 
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numbers of polytopes see [16℄. A major re
ent 
ontribution is the determi-nation of the 
losed 
one of 
ag ve
tors of all graded posets by Billera andHetyei ([8℄). Results on 
ag ve
tors and other invariants of Eulerian posetsand spe
ial 
lasses of them are surveyed in [21℄.Our goal has been to des
ribe the 
losed 
one of 
ag f -ve
tors of Eulerianpartially ordered sets. This problem was posed expli
itly in [10℄. There isno reason to expe
t that every positive integer ve
tor in this 
one is the 
agve
tor of some Eulerian poset. Nonlinear inequalities may 
ome into play,but their analysis is mu
h more diÆ
ult. We fo
us here on linear inequalitiesvalid for all Eulerian 
ag ve
tors and the Eulerian posets with extreme 
agve
tors. This approa
h has been used previously to study f -ve
tors and
ag ve
tors of various 
lasses of posets. See Bayer ([2℄) on four-dimensionalpolytopes, Babson, Billera and Chan ([1℄) on 
ubi
al polytopes, and Billeraand Hetyei ([8, 9℄) on graded posets and planar posets. In all 
ases wherethe 
one is known, it turns out to be �nitely generated; this is veri�ed onlyby �nding a 
omplete, �nite set of fa
ets or extremes. We expe
t that thesame holds for the 
one of 
ag ve
tors of Eulerian posets.Finding the fa
ets of the 
one means �nding all 
ru
ial inequalities sat-is�ed by Eulerian 
ag ve
tors. One set of inequalities (given in Proposi-tion 3.1) follows easily from the de�nition of Eulerian. A se
ond set provedhere (Theorem 3.2) generalizes an inequality found by Billera and Liu ([10℄).We do not know if these two 
lasses of inequalities are enough to determine
ompletely the 
one.Billera and Hetyei ([8℄) developed a poset 
onstru
tion that yields all theextreme rays of the 
one of 
ag ve
tors of graded posets. By introdu
ingthe 
on
ept of a \half-Eulerian" poset, we are able to use the Billera-Hetyei
onstru
tion to �nd extreme rays of the Eulerian 
one. For rank n+ 1 thisgives � nbn=2
� extreme rays. Not all the extreme rays 
ome this way, however,and we are for
ed to use more 
ompli
ated 
onstru
tions of extreme Eulerianposets. These 
onstru
tions are suggested by the 
e-index (a variation ofthe 
d-index).The ability to explore the 
one in low ranks using the 
omputer pa
kagePORTA ([14℄) was 
ru
ial to this proje
t. The straightforward des
riptionof the 
one in ranks at most 6 breaks down at rank 7. This leads us to new
lasses of inequalities and extremes.The remainder of this se
tion provides de�nitions and other ba
kground,and the de�nition of the 
ag L-ve
tor, whi
h simpli�es the 
al
ulations. Se
-tion 2 des
ribes the extreme rays of the general graded 
one, de�nes half-Eulerian posets, identi�es whi
h limit posets are half-Eulerian, and 
omputesthe 
orresponding 
d-indi
es. Se
tion 3 gives two general 
lasses of inequal-2



ities on Eulerian 
ag ve
tors. Se
tion 4 shows that the half-Eulerian limitposets all give extremes of the Eulerian 
one, identi�es some inequalities inall ranks as fa
et-indu
ing, and des
ribes 
ompletely the 
one for rank atmost 7.1.1 Ba
kgroundA graded poset P is a �nite partially ordered set with a unique minimumelement 0̂, a unique maximum element 1̂, and a rank fun
tion � : P �! Nsatisfying �(0̂) = 0, and �(y) � �(x) = 1 whenever y 2 P 
overs x 2 P .The rank �(P ) of a graded poset P is the rank of its maximum element.Given a graded poset P of rank n+1 and a subset S of f1; 2; : : : ; ng (whi
hwe abbreviate as [1; n℄), de�ne the S{rank{sele
ted subposet of P to be theposet PS = fx 2 P : �(x) 2 Sg [ f0̂; 1̂g:Denote by fS(P ) the number of maximal 
hains of PS . Equivalently, fS(P ) isthe number of 
hains x1 < � � � < xjSj in P su
h that f�(x1); : : : ; �(xjSj)g = S.The ve
tor (fS(P ) : S � [1; n℄) is 
alled the 
ag f -ve
tor of P . Wheneverit does not 
ause 
onfusion, we write fs1 ::: sk rather than ffs1;:::;skg; in par-ti
ular, ffmg is always denoted fm.Various properties of the 
ag f -ve
tor are more easily seen in di�erentbases. An often used equivalent en
oding is the 
ag h-ve
tor (hS(P ) : S � [1; n℄)given by the formula hS(P ) = XT�S(�1)jSnT jfT (P );or, equivalently, fS(P ) = XT�S hT (P ):The ab-index 	P (a; b) of P is a generating fun
tion for the 
ag h-ve
tor. Itis the following polynomial in the non
ommuting variables a and b:	P (a; b) = XS�[1;n℄hS(P )uS ; (1)where uS is the monomial u1u2 � � � un with ui = a if i 62 S, and ui = b ifi 2 S.The M�obius fun
tion of a graded poset P is de�ned re
ursively for anysubinterval of P by the formula�([x; y℄) = ( 1 if x = y;�Px�z<y �([x; z℄) otherwise:3



Equivalently, by Philip Hall's theorem, the M�obius fun
tion of a graded posetP of rank n+1 is the redu
ed Euler 
hara
teristi
 of the order 
omplex, i.e.,it is given by the formula�(P ) = XS�[1;n℄(�1)jSj+1fS(P ): (2)(See [19, Proposition 3.8.5℄.)A graded poset P is Eulerian if the M�obius fun
tion of every interval[x; y℄ is given by �([x; y℄) = (�1)�(x;y). (Here �(x; y) = �([x; y℄) = �(y) ��(x).)The �rst 
hara
terization of all linear equalities holding for the 
ag f -ve
tors of all Eulerian posets was given by Bayer and Billera in [4℄. Theequations of the theorem are 
alled the generalized Dehn-Sommerville equa-tions. Call the subspa
e of R2n they determine the Eulerian subspa
e; itsdimension is the Fibona

i number en (e0 = e1 = 1, en = en�1 + en�2).Theorem 1.1 (Bayer and Billera) Every linear equality holding for the
ag f -ve
tor of all Eulerian posets of rank n + 1 is a 
onsequen
e of theequalities �(�1)i�1 + (�1)k+1� fS + kXj=i(�1)jfS[fjg = 0for S � [1; n℄ and [i; k℄ a maximal interval of [1; n℄ n S.Fine dis
overed that the ab-index of a polytope 
an be written as apolynomial in the non
ommuting variables 
 = a + b and d = ab + ba.Bayer and Klapper ([6℄) proved that for a graded poset P , the equations ofTheorem 1.1 hold if and only if the ab-index is a polynomial with integer
oeÆ
ients in 
 and d. This polynomial is 
alled the 
d-index of P . Stanley([20℄) gives an expli
it re
ursion for the 
d-index in terms of intervals of Pfor Eulerian posets. (He thus gives another proof of the existen
e of the
d-index for Eulerian posets.)1.2 The 
ag `-ve
tor and the 
ag L-ve
torThe introdu
tion of another ve
tor equivalent to the 
ag f -ve
tor simpli�es
al
ulations.De�nition 1 The 
ag `-ve
tor of a graded partially ordered set P of rankn+ 1 is the ve
tor (`S(P ) : S � [1; n℄), where`S(P ) = (�1)n�jSj XT�[1;n℄nS(�1)jT jfT (P ):4



As a 
onsequen
e, fS(P ) = XT�[1;n℄nS `T (P ): (3)The 
ag `-ve
tor was �rst 
onsidered by Billera and Hetyei ([8℄) while de-s
ribing all linear inequalities holding for the 
ag f -ve
tors of all gradedpartially ordered sets. It turned out to give a sparse representation of the
one of 
ag f -ve
tors des
ribed in that paper.A variant signi�
ant for Eulerian posets is the 
ag L-ve
tor.De�nition 2 The 
ag L-ve
tor of a graded partially ordered set P of rankn+ 1 is the ve
tor (LS(P ) : S � [1; n℄), whereLS(P ) = (�1)n�jSj XT�[1;n℄nS��12�jT j fT (P ):Inverting the relation of the de�nition givesfS(P ) = 2jSj XT�[1;n℄nSLT (P ):When the poset P is Eulerian, the parameters LS(P ) are a
tually the
oeÆ
ients of the 
e-index of the poset P . The 
e-index was introdu
ed byStanley ([20℄) as an alternative way of viewing the 
d-index. The letter 

ontinues to stand for a+b; now let e = a�b. The ab-index of a poset 
an bewritten in terms of 
 and d if and only if it 
an be written in terms of 
 andee. It is easy to verify that LS(P ) is exa
tly the 
oeÆ
ient in the 
e-indexof P of the word uS = u1u2 � � � un where ui = 
 if i 62 S, and ui = e ifi 2 S. Sin
e the existen
e of the 
d-index is equivalent to the validity of thegeneralized Dehn-Sommerville equations, we get the following proposition.(It 
an be proved dire
tly from the de�nition of the 
ag L-ve
tor, yielding analternative way to prove the existen
e of the 
d-index for Eulerian posets.)A subset S � [1; n℄ is even if all the maximal intervals 
ontained in S are ofeven length.Proposition 1.2 The generalized Dehn-Sommerville relations hold for aposet P if and only if LS(P ) = 0 whenever S is not an even set.The generalized Dehn-Sommerville relations hold (by 
han
e) for somenonEulerian posets. A poset is Eulerian, however, if these relations hold forall intervals of the poset.Corollary 1.3 A graded partially ordered set is Eulerian if and only ifLS([x; y℄) = 0 for every interval [x; y℄ � P and every subset S of [1; �(x; y) � 1℄that is not an even set. 5



2 Half-Eulerian posetsIn this se
tion we �nd spe
ial points in the 
losed 
one of 
ag ve
tors ofEulerian posets. First 
onsider the extremes of the 
losed 
one of 
ag ve
torsof all graded posets, found by Billera and Hetyei ([8℄).De�nition 3 Given a graded poset P of rank n+ 1, an interval I � [1; n℄,and a positive integer k, DkI (P ) is the graded poset obtained from P byrepla
ing every x 2 P with rank in I by k elements x1; : : : ; xk and byimposing the following relations.(i) If for x; y 2 P , �(x) 2 I and �(y) 62 I, then xi < y in DkI (P ) if andonly if x < y in P , and y < xi in DkI (P ) if and only if y < x in P .(ii) If f�(x); �(y)g � I, then xi < yj in DkI (P ) if and only if i = j andx < y in P .Clearly DkIP is a graded poset of the same rank as P . Its 
ag f -ve
tor
an be 
omputed from that of P in a straightforward manner.An interval system on [1; n℄ is any set of subintervals of [1; n℄ that form ananti
hain (that is, no interval is 
ontained in another). (Mu
h of what followsholds even if the intervals do not form an anti
hain, but the assumptionsimpli�es the statements of some theorems.) For any interval system I on[1; n℄, and any positive integer N , the poset P (n;I; N) is de�ned to be theposet obtained from a 
hain of rank n+ 1 by applying DNI for all I 2 I. Itdoes not matter in whi
h order these operators are applied. (Di�erent valuesof N 
an be used for ea
h interval I, but we do not need that generalityhere.) Consider the sequen
e of posets for a �xed interval system I as Ngoes to in�nity. Billera and Hetyei ([8℄) showed that the normalized 
agve
tors of su
h a sequen
e 
onverge to a ve
tor on an extreme ray of the
one of 
ag ve
tors of all graded posets. More pre
isely,Theorem 2.1 (Billera and Hetyei) Suppose I is an interval system ofk intervals on [1; n℄. Then the ve
tor� limN!1 1Nk fS(P (n;I; N)) : S � [1; n℄�generates an extreme ray of the 
one of 
ag ve
tors of all graded posets ofrank n+ 1. Moreover, all extreme rays are generated in this way.Unfortunately, none of the posets P (n;I; N) are Eulerian, and noneof these extreme rays are 
ontained in the 
losed 
one of 
ag ve
tors of6



Eulerian posets. However some of the posets are \half-Eulerian", and leadus to extreme rays of the Eulerian 
one.For the interval system I = f[1; 1℄; [2; 2℄; : : : ; [n; n℄g, abbreviate D2I(P )as DP , and 
all this the horizontal double of P . Thus the horizontal doubleof P is the poset obtained from P by repla
ing every x 2 P n f0̂; 1̂g withtwo elements x1; x2, su
h that 0̂ and 1̂ remain the minimum and maximumelements of the partially ordered set, and xi < yj if and only if x < y in P .(In the Hasse diagram of P , every edge is repla
ed by 1.)De�nition 4 A half-Eulerian poset is a graded partially ordered set whosehorizontal double is Eulerian.The 
ag f -ve
tors of P and its horizontal double are 
onne
ted by theformula fS(DP ) = 2jSjfS(P ). Thus,LS(DP ) = `S(P ): (4)Applying the de�nition of Eulerian to the horizontal double of a posetwe getProposition 2.2 A graded partially ordered set P is half-Eulerian if andonly if for every interval [x; y℄ of P ,�(x;y)�1Xi=1 (�1)i�1fi([x; y℄) = (1 + (�1)�(x;y))=2:Corollary 1.3 
an now be restated for half-Eulerian posets.Proposition 2.3 A graded partially ordered set is half-Eulerian if and onlyif `S([x; y℄) = 0 for every interval [x; y℄ � P and every subset S of [1; �(x; y) � 1℄that is not an even set.The 
ag ve
tors of the horizontal doubles of half-Eulerian posets span theEulerian subspa
e, the subspa
e de�ned by the generalized Dehn-Sommervilleequations. But the 
ones they determine may be di�erent. Write Cn+1E forthe 
losed 
one of 
ag ve
tors of Eulerian posets of rank n+1, and Cn+1D forthe 
losed 
one of 
ag ve
tors of horizontal doubles of half-Eulerian posets.We do not know if the in
lusion Cn+1D � Cn+1E is a
tually equality.For whi
h interval systems I is P (n;I; N) half-Eulerian?De�nition 5 An interval system I on [1; n℄ is even if for every pair ofintervals I; J 2 I the interse
tion I \J has an even number of elements. (Inparti
ular, jIj must be even for every I 2 I.)7



Our goal is to show that the posets P (n;I; N) are half-Eulerian if andonly if I is an even interval system. For this we need to understand theintervals of the posets P (n; I; N).Proposition 2.4 The interval [x; y℄ � P (n;I; N) is isomorphi
 toP (�(x; y)� 1;J ; N), where J = fI ��(x) : I 2 I; I � [�(x)+1; �(y)� 1℄g.Proof: Let �(x) = r and �(y) = s. Constru
t P (n;I; N) by applying theoperators DNI for all I 2 I to a 
hain. Sin
e the order of applying theseoperators is arbitrary, we may 
hoose to apply �rst those for whi
h I isnot a subset of [r + 1; s � 1℄. At this point for every x0 of rank r and y0of rank s with y0 � x0, the interval [x0; y0℄ is isomorphi
 to a 
hain of rank�(x0; y0). Applying the remaining operators DNI leaves the elements of rankat most r or of rank at least s un
hanged, and has the same e�e
t on [x0; y0℄as applying the operators DNI�r to a 
hain of rank �(x0; y0). 3The e�e
t on the 
ag f -ve
tor of applying the operator DNI to a posetof rank n+ 1 is given by the formulafS(DNI (P )) = ( NfS(P ) if I \ S 6= ;,fS(P ) otherwise. (5)This enables us to write an `-ve
tor formula.Lemma 2.5 For P a graded poset of rank n+1, S � [1; n℄, and N a positiveinteger, `S(DNI (P )) = N`S(P )� (N � 1) XT[I=S `T (P ): (6)Proof: From the de�nition of `S and equation (5),`S(DNI (P )) = (�1)n�jSj XR�[1;n℄nS(�1)jRjfR(DNI (P ))= (�1)n�jSj XR�[1;n℄nS(�1)jRjNfR(P )� (�1)n�jSj XR�[1;n℄nSR�[1;n℄nI(�1)jRj(N � 1)fR(P )= N`S(P )� (�1)n�jSj XR�[1;n℄nSR�[1;n℄nI (�1)jRj(N � 1)fR(P ):8



By (3), the 
oeÆ
ient in �(�1)n�jSjPR�[1;n℄nSR�[1;n℄nI (�1)jRj(N�1)fR(P ) of `T (P )is �(N � 1)(�1)n�jSj XR�[1;n℄nSR�[1;n℄n(T[I)(�1)jRj ;whi
h is an empty sum if (T [ I) is not 
ontained in S, zero if (T [ I) isproperly 
ontained in S, and �(N � 1)(�1)n�jSj(�1)j[1;n℄nSj = �(N � 1) if(T [ I) = S. This gives the re
ursion of the lemma. 3From this we 
an determine whi
h of the posets P (n;I; N) are half-Eulerian.Proposition 2.6 Let I be an interval system on [1; n℄.1. If I is an even system of intervals, then for all N the partially orderedset P (n;I; N) is half-Eulerian.2. If for some N > 1, P (n;I; N) is half-Eulerian, then I is an evensystem of intervals.Proof: Using Lemma 2.5 we 
an show by indu
tion on jIj that for everyN , `n+1S (P (n;I; N)) is zero unless S is the union of some intervals of I.In parti
ular, if I is an even system of intervals, then `S (P (n;I; N)) = 0whenever S is not an even set. The same observation holds for every interval[x; y℄ � P (n;I; N) as well, sin
e by Proposition 2.4 [x; y℄ is isomorphi
 toP (m;J ; N) for somem � n and some even system of intervals J . Thereforethe 
onditions of Proposition 2.3 are satis�ed by P (n;I; N) for every N , ifI is an even system of intervals.Now assume I is a system of intervals that is not even. First 
onsiderthe 
ase where I 
ontains an interval Im = [a; b℄ with b � a even (hen
eIm is odd). Let J = fIm � a + 1g = f[1; b � a + 1℄g. For S nonempty,fS(P (b� a+ 1;J ; N)) = N , so`[1;b�a+1℄(P (b� a+ 1;J ; N))= XT�[1;b�a+1℄(�1)jT jfT (P (b� a+ 1;J ; N))= 1 + XT�[1;b�a+1℄T 6=; (�1)jT jN = 1�N:So `[1;b�a+1℄(P (b � a + 1;J ; N)) 6= 0 for N > 1. Fix N > 1, and 
hoose xand y in P (n;I; N) with �(x) = a � 1, �(y) = b + 1, and x � y. Then by9



Proposition 2.4, `[1;�(x;y)�1℄([x; y℄) = `[1;b�a+1℄(P (b� a+1;J ; N)) 6= 0, withj[1; b � a+ 1℄j odd. So P (n; I; N) is not half-Eulerian.Now suppose I 
ontains only even intervals, but some two intervals havean odd overlap. Let Ip = [a; d℄ and Iq = [
; b℄, where a < 
 � d < b andd� a and b� 
 are odd, but d� 
 is even. Then b� a is also even. We showthat we may assume no other interval of I is in the union Ip [ Iq. SupposeIr = [e; f ℄ is another interval of I with [e; f ℄ � [a; b℄ (and f � e is odd).Sin
e I is an anti
hain, a < e < 
 � d < f < b. If e � a is even, thenjIq \ Irj = j[
; f ℄j = f � 
 + 1 = (f � e) + (e � a) � (d � a) + (d � 
) + 1,whi
h is odd, be
ause it is the sum of three odds and two evens. If e� a isodd, then jIp \ Irj = j[e; d℄j = d� e+1 = (d� a)� (e� a) + 1, whi
h is oddbe
ause it is the sum of three odds. Thus, if two intervals of I have oddinterse
tion and their union 
ontains a third interval of I, then two intervalsof I with smaller union have odd interse
tion.So we may assume Ip = [a; d℄ and Iq = [
; b℄ have odd interse
tion, andtheir union [a; b℄ 
ontains no other interval of I. Let J = fIp � a + 1;Iq � a+ 1g = f[1; d � a+ 1℄; [
 � a+ 1; b� a+ 1℄g. ThenfS(P (b� a+ 1;J ; N))= 8><>: 1 if S = ;N2 if S \ (Ip � a+ 1) 6= ; and S \ (Iq � a+ 1) 6= ;N otherwise.Sò [1;b�a+1℄(P (b� a+ 1;J ; N))= XT�[1;b�a+1℄(�1)jT jfT (P (b� a+ 1;J ; N))= XT�[1;b�a+1℄(�1)jT jN2 + XT�[1;
�a℄(�1)jT j(N �N2)+ XT�[d�a+2;b�a+1℄(�1)jT j(N �N2) + (1� 2N +N2) = (1�N)2:So `[1;b�a+1℄(P (b � a + 1;J ; N)) 6= 0 for N > 1. Fix N > 1, and 
hoose xand y in P (n;I; N) with �(x) = a � 1, �(y) = b + 1, and x � y. Then byProposition 2.4, `[1;�(x;y)�1℄([x; y℄) = `[1;b�a+1℄(P (b� a+1;J ; N)) 6= 0, withj[1; b � a+ 1℄j odd. So P (n;I; N) is not half-Eulerian. 3As will be seen later, even interval systems give rise to extreme rays ofthe 
one of 
ag ve
tors of Eulerian posets. It is of interest, therefore, to
ount them. 10



Proposition 2.7 The number of even interval systems on [1; n℄ is � nbn=2
�.Proof: We de�ne a one-to-one 
orresponden
e between even interval sys-tems on [1; n℄ and sequen
es � = (�1; �2; : : : ; �n) 2 f�1; 1gn satisfyingPi �i = 0 if n is even and Pi �i = 1 if n is odd. Clearly there are � nbn=2
�su
h sequen
es.For I an even interval system, de�ne �(I) = (�1; �2; : : : ; �n) 2 f�1; 1gn,where �i = (�1)i if i is an endpoint of an interval of I, and �i = (�1)i�1otherwise. (Note that for an even interval system, no number 
an be anendpoint of more than one interval.) For I an even interval system, summing(�1)i over the endpoints of intervals gives 0. SonXi=1 �i = nXi=1(�1)i�1 + Xi endpointof interval 2(�1)i= nXi=1(�1)i�1 = ( 0 if n is even1 if n is odd :On the other hand, given a sequen
e � = (�1; �2; : : : ; �n) 2 f�1; 1gnsatisfyingPi �i = 0 if n is even andPi �i = 1 if n is odd, 
onstru
t an eveninterval system as follows. Let s1 < s2 < � � � < sk be the sequen
e of indi
ess for whi
h �s = (�1)s. Then Pni=1(�1)i�1 = Pni=1 �i = Pni=1(�1)i�1 +Pkj=1 2(�1)sj , so Pkj=1(�1)sj = 0. Thus the sequen
e of sj's 
ontains thesame number of even numbers as odd. Constru
t an interval system I =f[a1; b1℄; [a2; b2℄; : : : ; [am; bm℄g (2m = k) re
ursively as follows. Let a1 = s1and let b1 = sj where j is the least index su
h that s1 and sj are of oppositeparity. Then I = [a1; b1℄[I 0, where I 0 is the interval system asso
iated withs2 < s3 < s4 < � � � < sk with b1 = sj removed. Clearly [a1; b1℄ is of evenlength. If [a1; b1℄\[ai; bi℄ 6= ; for some interval [ai; bi℄ of I 0, then ai < b1, so bythe 
hoi
e of b1, ai has the same parity as a1. Thus [a1; b1℄\ [ai; bi℄ = [ai; b1℄is of even length. Furthermore, bi and b1 are of the same parity, sin
e ai anda1 are, so again by the 
hoi
e of b1, bi > b1. So the interval [ai; bi℄ is not
ontained in the interval [a1; b1℄. The interval system f[am; bm℄g, is even, soby indu
tion I is an even interval system.These 
onstru
tions are inverses, giving the desired bije
tion. 3Re
all that Billera and Hetyei ([8℄) found extremes of the 
one of 
agve
tors of graded posets as limits of the normalized 
ag ve
tors of theposets P (n;I; N). The next proposition follows easily by indu
tion fromLemma 2.5. 11



Proposition 2.8 Let I = fI1; I2; : : : ; Ikg be a system of k � 0 intervalson [1; n℄. ThenlimN�!1 1Nk `S (P (n;I; N))= kXj=0(�1)j ���n1 � i1 < � � � < ij � k : Ii1 [ � � � [ Iij = So��� :Write fS(P (n;I)) = limN!1 fS(P (n;I; N))=N jIj. The ve
tor thesenumbers form (as S ranges over all subsets of [1; n℄) is not the 
ag f -ve
tor of an a
tual poset, but it is in the 
losed 
one of 
ag f -ve
torsof all graded posets. We 
all the symbol P (n;I) a \limit poset" and re-fer to the 
ag ve
tor of the limit poset. If I is an even interval system,then (fS(P (n;I)) : S � [1; n℄) is in the 
losed 
one of 
ag ve
tors ofhalf-Eulerian posets. To get Eulerian posets the horizontal double oper-ator is applied to P (n;I; N). The ve
tor (fS(DP (n;I)) : S � [1; n℄) isde�ned as a limit of the resulting normalized 
ag f -ve
tors, and satis�esfS(DP (n;I)) = 2jSjfS(P (n; I)). It lies in the 
one Cn+1D of 
ag ve
tors ofdoubles of half-Eulerian posets, a sub
one of the Eulerian 
one.Re
all (equation (4)) that the `-ve
tor of a poset P equals the L-ve
tor ofits horizontal double DP . The same holds after passing to the limit posets.Thus, Proposition 2.8 givesLS(DP (n;I)) = kXj=0(�1)j ���n1 � i1 < � � � < ij � k : Ii1 [ � � � [ Iij = So��� ;where I = fI1; I2; : : : ; Ikg.We look at the asso
iated 
d-indi
es of the \doubled limit posets." Thinkof a word in 
 and d as a string with ea
h 
 o

upying one position and ea
hd o

upying two positions. The weight of a 
d-word w is then the number ofpositions of the string. Asso
iated to ea
h 
d-word w is the even set S(w)
onsisting of the positions o

upied by the d's.Proposition 2.9 For ea
h 
d-word w with k d's and weight n, there existsan even interval system Iw for whi
h the 
d-index of DP (n;Iw) is 2kw.Proof: Fix a 
d-word w with k d's and weight n. Write the elements ofS(w) in in
reasing order as i1, i1 + 1, i2, i2 + 1, . . . , ik, ik + 1, and let Iwbe the interval system f[i1; i1 +1℄; [i2; i2 +1℄; : : : ; [ik; ik + 1℄g. Let � = 2kw.Rewrite the 
d-polynomial � as a 
e-polynomial. Re
all from Se
tions 1.112



and 1.2 that 
 = a+ b, d = ab+ ba, and e = a� b, so d = (

� ee)=2. Thus,� is rewritten as a sum of 2k terms. Ea
h is the result of repla
ing somesubset of the d's by 

, and the rest by ee; the 
oeÆ
ient is �1, dependingon whether the number of d's repla
ed by ee is even or odd. Thus2kw = XJ�[1;k℄(�1)jJjwJ ;where wJ = w1w2 � � �wn, with wij = wij+1 = e if j 2 J and the remainingwi's are 
. By the L-ve
tor version of Proposition 2.8, this is pre
isely the
e-index of DP (n;Iw). 3In [20℄ Stanley �rst found for ea
h 
d-word w a sequen
e of Eulerianposets whose normalized 
d-indi
es 
onverge to w. Our limit posets are
losely related to Stanley's, but this parti
ular 
onstru
tion highlights theimportant link between the half-Eulerian and Eulerian 
ones.Before turning to inequalities satis�ed by the 
ag ve
tors of Eulerianposets, we 
onsider the question of whether the two 
ones Cn+1D and Cn+1Eare equal. For low ranks the two 
ones are the same, as seen below. Weknow of no example in any rank of an Eulerian poset whose 
ag ve
tor isnot 
ontained in the 
one Cn+1D of doubled half-Eulerian posets. To look forsu
h an example we turn to the best known examples of Eulerian posets,the fa
e latti
es of polytopes. In [20℄ Stanley proved the nonnegativity ofthe 
d-index for \S-shellable regular CW-spheres", a 
lass of Eulerian posetsthat in
ludes all polytopes. By a result of Billera, Ehrenborg, and Readdy([7℄), the latti
e of regions of any oriented matroid also has a nonnegative 
d-index. (Some entries in the 
d-index are nonnegative for all Eulerian posets;see [3℄ for details.) Proposition 2.9 implies that nonnegative 
d-indi
es (andthe asso
iated 
ag ve
tors) are in the 
one generated by the 
d-indi
es (
agve
tors) of the doubles of limit posets asso
iated with even interval systems.Corollary 2.10 Cn+1D 
ontains the 
ag ve
tors of all Eulerian posets withnonnegative 
d-indi
es. This in
ludes the fa
e latti
es of polytopes and thelatti
es of regions of oriented matroids.Conje
ture 2.11 The 
losed 
one Cn+1E of 
ag ve
tors of Eulerian posetsis the same as the 
losed 
one Cn+1D of 
ag ve
tors of horizontal doubles ofhalf-Eulerian posets.3 InequalitiesThroughout this se
tion we use the following notation.13



De�nition 6 The interval system I[S℄ of a set S � [1; n℄ is the family ofintervals I[S℄ = f[a1; b1℄; : : : ; [ak; bk℄g, where S = [a1; b1℄ [ � � � [ [ak; bk℄ andbi�1 < ai� 1 for i � 2. In other words, I[S℄ is the 
olle
tion of the maximalintervals 
ontained in S.Note that S is an even set if and only if I[S℄ is an even interval system.The following 
ag ve
tor forms 
an be proved nonnegative by writingthem as 
onvolutions of basi
 nonnegative forms ([10, 15℄). (See AppendixB.) The issue of whether they give all linear inequalities on 
ag ve
torsof Eulerian posets was raised by Billera and Liu (see the dis
ussion afterProposition 1.3 in [10℄). We give here a simple dire
t argument for theirnonnegativity that avoids 
onvolutions.Proposition 3.1 (Inequality Lemma) Let T and V be subsets of [1; n℄with T � V , su
h that for every I 2 I[V ℄, jI \ T j � 1. Write S = [1; n℄ n V .For P any rank n+ 1 Eulerian poset,XR�T (�2)jTnRjfS[R(P ) � 0:Equivalently, (�1)jT j XT�Q�V LQ(P ) � 0:Proof: The idea is that sin
e no two elements of T are in the same gap ofS, elements with ranks in T 
an be inserted independently in 
hains withrank set S. For C an S-
hain (i.e., a 
hain with rank set S) and t 2 T , letnt(C) be the number of rank t elements x 2 P su
h that C [ fxg is a 
hainof P . Sin
e every interval of an Eulerian poset is Eulerian, nt(C) � 2 for allC and t. SoXR�T(�2)jTnRjfS[R(P ) = XR�T (�2)jTnRj XC an S-
hain Yt2Rnt(C)= XC an S-
hain XR�T(�2)jTnRj Yt2Rnt(C)= XC an S-
hainYt2T(nt(C)� 2) � 0:So the 
ag ve
tor inequality is proved. The se
ond inequality is simply thetranslation into L-ve
tor form. 3Here are some new inequalities. 14



Theorem 3.2 Let 1 � i < j < k � n. For P any rank n + 1 Eulerianposet, fik(P )� 2fi(P )� 2fk(P ) + 2fj(P ) � 0:Proof: First order the rank j elements of P in the following way. Chooseany order, G1, G2, . . . , Gm for the 
omponents of the Hasse diagram of therank-sele
ted poset Pfi;j;kg. For ea
h rank j element y of P , identify the
omponent 
ontaining y by y 2 Gg(y). Order the rank j elements of P inany way 
onsistent with the ordering of 
omponents. That is, 
hoose anorder y1, y2, . . . , yr su
h that ys < yt implies g(ys) � g(yt).A rank i element x belongs to yq if q is the least index su
h that x < yqin P . Write Iq for the number of rank i elements belonging to yq, and I 0q forthe number of rank i elements x su
h that x < yq, but x does not belongto yq. Similarly, a rank k element z belongs to yq if q is the least index su
hthat yq < z in P . Write Kq for the number of rank k elements belongingto yq, and K 0q for the number of rank k elements z su
h that yq < z, but zdoes not belong to yq. Note that Iq + I 0q � 2 and Kq +K 0q � 2, sin
e P isEulerian. A 
ag x < z belongs to yq if x < yq < z and q is the least indexsu
h that either x < yq or yq < z.Let F = fik(P )� 2fi(P )� 2fk(P ) + 2fj(P ). Let Fq be the 
ontributionto F by elements and 
ags belonging to yq. Thus,Fq = IqKq + I 0qKq + IqK 0q � 2Iq � 2Kq + 2:If I 0q � 2, then Fq = Iq(Kq +K 0q � 2) + (I 0q � 2)Kq + 2 � 2.If I 0q = K 0q = 0, then Fq = (Iq � 2)(Kq � 2)� 2 � �2.In all other 
ases it is easy to 
he
k that Fq � 0.Suppose that the rank j elements in 
omponent G` are ys, ys+1, . . . , yt.Then I 0s = K 0s = 0, so Fs � �2. Furthermore, It = Kt = 0, be
ause anyrank i element x related to yt must also be related to at least one other rankj element, and it is in the same 
omponent. That rank j element has indexless than t, so x does not belong to yt. This in turn implies I 0t � 2, so Ft � 2.For all q, s < q < t, either I 0q > 0 or K 0q > 0, by the 
onne
tivity of the
omponent, so Fq � 0. Thus Ptq=s Fq � 0. This is true for ea
h 
omponentG`, so F =Prq=1 Fq � 0. 3These inequalities 
an be used to generate others by 
onvolution (seeAppendix B.)Evaluating the 
ag ve
tor inequalities of Proposition 3.1 for the horizon-tal double DP of a half-Eulerian poset P gives the inequalities, for S and T15



satisfying the hypotheses of Proposition 3.1,XR�T (�1)jTnRjfS[R(P ) � 0: (7)These inequalities are valid not just for half-Eulerian posets but for allgraded posets. The proof of Proposition 3.1 uses only the fa
t that in everyopen interval of an Eulerian poset there are at least two elements of ea
hrank. If the proof is rewritten using the assumption that in every openinterval there is at least one element of ea
h rank, the inequalities (7) areproved for all graded posets.Similarly, the 
ag ve
tor inequalities of Theorem 3.2 give inequalities forhalf-Eulerian posets,fik(P )� fi(P )� fk(P ) + fj(P ) � 0:The proof of Theorem 3.2 
an be modi�ed in the same way to show theseinequalities are valid for all graded posets. The �rst instan
e of this 
lass ofinequalities was found by Billera and Liu ([10℄).We 
onje
ture that all inequalities valid for half-Eulerian posets 
omefrom inequalities valid for all graded posets. Inequalities for half-Eulerianposets are to be interpreted as 
onditions in the subspa
e of R2n spannedby 
ag ve
tors of half-Eulerian posets, but we are des
ribing them in R2n .Giving inequalities using linear forms in the 
ag numbers fS over R2n , thestatement is as follows.Conje
ture 3.3 Every linear form that is nonnegative for the 
ag ve
torsof all half-Eulerian posets is the sum of a linear form that is nonnegative forall graded posets and a linear form that is zero for all half-Eulerian posets.4 Extreme Rays and Fa
ets of the ConeWe have des
ribed some points in the Eulerian 
one Cn+1E and some inequal-ities satis�ed by all points in the 
one. We turn now to identifying whi
h ofthese give extreme rays and fa
ets.If I is an even interval system, then (fS(P (n;I)) : S � [1; n℄) is on anextreme ray in the 
losed 
one of 
ag ve
tors of all graded posets, and is inthe sub
one of 
ag f -ve
tors of half-Eulerian posets. Therefore it is on anextreme ray of the sub
one. By Proposition 2.7 this gives � nbn=2
� extremerays for the rank n+ 1 
one. 16



Proposition 4.1 For every even interval system I, the 
ag ve
tor of thelimit poset P (n;I) generates an extreme ray of the 
one of 
ag ve
tors ofhalf-Eulerian posets.What does this say about the extreme rays of the 
one of 
ag ve
torsof Eulerian posets? For every even interval system I, the 
ag ve
tor ofDP (n;I) lies on an extreme ray of the sub
one Cn+1D , but we 
annot 
on
ludedire
tly that it lies on an extreme ray of the 
one Cn+1E . A separate proof isneeded.For the following proofs, we use the 
omputation of `Q(P (n;I)) (andLQ(DP (n;I))) from the de
ompositions of Q as the union of intervals of I(Proposition 2.8).Theorem 4.2 For every even interval system I, the 
ag ve
tor of the dou-bled limit poset DP (n;I) generates an extreme ray of the 
one of 
ag ve
torsof Eulerian posets.Proof: We work in the 
losed 
one of L-ve
tors of Eulerian posets. The
one of L-ve
tors of Eulerian posets is 
ontained in the subspa
e of R2ndetermined by the equations LS = 0 for S not an even set. To prove thatthe L-ve
tor of DP (n;I) generates an extreme ray, we show that it lies onlinearly independent supporting hyperplanes, one for ea
h nonempty evenset V in [1; n℄. Fix an even interval system I. For ea
h nonempty evenset V � [1; n℄, we �nd a set T su
h that T and V satisfy the hypothesis ofProposition 3.1 and PT�Q�V LQ(DP (n;I)) = 0.Case 1. Suppose V is the union of some intervals in I. Let I1, I2,. . . , Ik be all the intervals of I 
ontained in V . Set T = ;. Then forea
h subset J � [1; k℄, the 
orresponding union of intervals 
ontributes(�1)jJj to LQ(DP (n;I)), for Q = [j2JIj. Thus PT�Q�V LQ(DP (n;I)) =PJ�[1;k℄(�1)jJj = 0.Case 2. If V is not the union of some intervals in I, let W be the unionof all those intervals of I 
ontained in V . Choose t 2 V nW , and set T = ftg.For Q � V , LQ(DP (n;I)) = 0 unless Q �W . But if Q �W then t 
annotbe in Q. So Pftg�Q�V LQ(DP (n;I)) = 0.Now PT�Q�V LQ(P ) = 0 determines a supporting hyperplane of the
losed 
one of L-ve
tors of Eulerian posets, be
ause the inequality of Propo-sition 3.1 is valid, and the poset DP (n;I) lies on the hyperplane. Thehyperplane equations ea
h involve a distin
t maximal set V , whi
h is even,so they are linearly independent on the subspa
e determined by the equa-tions LS = 0 for S not an even set. So the doubled limit poset DP (n;I) ison an extreme ray of the 
one. 317



Note how far we are, however, from a 
omplete des
ription of the extremerays.Conje
ture 4.3 For every positive integer n, the 
losed 
one of 
ag f -ve
tors of Eulerian posets of rank n+ 1 is �nitely generated.Lemma 4.4 (Fa
et Lemma) Assume PQ�[1;n℄ aQLQ(P ) � 0 for all Eu-lerian posets P of rank n + 1. Let M � [1; n℄ be a �xed even set. Sup-pose for all even sets R � [1; n℄, R 6= M , there exists an interval systemI(R) 
onsisting of disjoint even intervals whose union is R and su
h thatPQ�[1;n℄ aQ`Q(P (n;I(R))) = 0. Then PQ�[1;n℄ aQLQ(P ) = 0 determines afa
et of the 
losed 
one of L-ve
tors of Eulerian posets.(Note that I(R) need not be I[R℄.)Proof: The dimension of the 
one Cn+1E equals the number of even subsets (aFibona

i number). So it suÆ
es to show that the ve
tors (`Q(P (n;I(R))))= (LQ(DP (n;I(R)))) are linearly independent. To see this, note that forevery set Q not 
ontained in R, `Q(P (n;I(R))) = 0. By the disjointnessof the intervals in I(R), there is a unique way to write R as the union ofintervals in I(R). So by Proposition 2.8, (`R(P (n;I(R)))) = (�1)jI(R)j.Thus, R is the unique maximal set Q for whi
h (`Q(P (n;I(R)))) 6= 0. Sothe L-ve
tors of the posets DP (n;I(R)), as R ranges over sets di�erent fromM , are linearly independent. 3Proposition 4.5 The inequality PQ�[1;n℄LQ(P ) � 0 (or, equivalently,f;(P ) � 0) determines a fa
et of the 
losed 
one of L-ve
tors of Eulerianposets of rank n+ 1.Proof: Apply the Fa
et Lemma 4.4 with M = ;. For a nonempty even setR, the interval system I[R℄ of R is nonempty, so PQ�[1;n℄ `Q(P (n;I[R℄)) =PJ�I[R℄(�1)jJ j = 0. 3Theorem 4.6 Let V be a subset of [1; n℄ su
h that every I 2 I[V ℄ has
ardinality at least 2, and every I 2 I[[0; n+ 1℄ n V ℄ has 
ardinality at most3. Assume that M is a subset of V su
h that every [a; b℄ 2 I[V ℄ satis�es thefollowing:(i) M \ [a; b℄ = ;; [a; a+ 1℄, or [b� 1; b℄.(ii) If a 62M then a� 2 2 f�1g [M .18



(iii) If b 62M then b+ 2 2 fn+ 2g [M .Then (�1)jM j=2 XM�Q�V LQ(P ) � 0 (8)determines a fa
et of Cn+1E . Furthermore, if we strengthen (i) by also requir-ing M \ [a; a+ 2℄ = ; for every [a; a+ 2℄ 2 I[V ℄, then distin
t pairs (M;V )give distin
t fa
ets.Proof: If M = ;, then 
onditions (ii) and (iii) for
e V = [1; n℄ (or V = ;if n � 1). The resulting inequality, PQ�[1;n℄LQ(P ) � 0, gives a fa
et, asshown in Proposition 4.5. Now assume that M 6= ;.Step 1 is to prove that inequality (8) holds for all Eulerian posets. Notethat I[M ℄ is a nonempty 
olle
tion of intervals of length two. From ea
hsu
h interval 
hoose one endpoint adja
ent to an element of [0; n+ 1℄ n V .Let T be the set of these 
hosen elements. The Inequality Lemma 3.1 ap-plies to these T and V be
ause ea
h interval of V 
ontains at most oneinterval of I[M ℄, and hen
e at most one element of T . The resulting in-equality is (�1)jT jPT�Q�V LQ � 0. Now LQ(P ) = 0 for all P if I[Q℄
ontains an odd interval. So we 
an restri
t the sum to even sets Q. Sin
eQ must be 
ontained in V , su
h a Q must 
ontain the intervals of M . Thus,(�1)jM j=2PM�Q�V LQ(P ) � 0.Step 2 is to prove that if I � [1; n℄ is an interval of 
ardinality at least 2and I 
ontains an element i not in V , then I 
ontains an element adja
entto an interval of M . If an interval from I[V ℄ ends at i � 1, then eitheri�1 2M or i+1 2M by (iii) (sin
e i+1 < n+2). Similarly, if an intervalfrom I[V ℄ begins at i + 1, then either i � 1 2 M or i + 1 2 M . So assumeno interval from I[V ℄ begins at i � 1 or ends at i + 1. The hypothesis ofthe theorem states that every interval from I[[0; n+ 1℄ n V ℄ has 
ardinalityat most three. Thus the interval [i � 1; i + 1℄ belongs to I[[0; n + 1℄ n V ℄.Hen
e i � 2 2 f�1g [ V and i + 2 2 fn + 2g [ V . If i � 2 = �1 thenI � [i; i + 1℄ = [1; 2℄, 
ondition (ii) applied to a = 3 yields 3 2 M , and2 2 I is adja
ent to 3. The 
ase when i+ 2 = n+ 2 is dealt with similarly.Finally, if i � 2 and i + 2 are both endpoints of intervals from I[V ℄, then,sin
e i 62M [ f�1; n+ 2g, 
ondition (ii) applied to a = i+ 2 and 
ondition(iii) applied to b = i � 2 yield i + 2 2 M and i � 2 2 M . Either i � 1 ori+ 1 belongs to I and ea
h of them is adja
ent to an element of M .Re
all that for I an even interval system, the ve
tor (`Q(P (n;I)) :Q � [1; n℄) is in the 
losed 
one of `-ve
tors of half-Eulerian posets. Step19



3 is to show that for ea
h even set R 6= M , there exists an even intervalsystem I with [i2II = R su
h that (�1)jM j=2PM�Q�V `Q(P (n;I)) = 0.Let R be an even set not equal to M . If M 6� R, then for every Q
ontaining M , `Q(P (n;I[R℄)) = 0. Now suppose M � R, but R 6� V . LetI be an interval of I[R℄ su
h that I 6� V . Then I 
ontains an elementadja
ent to an interval of M . Sin
e M � R and I is a maximal interval inR, I \M 6= ;. Thus every union of intervals of I[R℄ 
ontaining M must
ontain I and thus an element not in V . So PM�Q�V `Q(P (n;I[R℄)) = 0,be
ause all terms are zero.Finally, suppose M � R � V and R 6=M . Let I be the interval systemof R 
onsisting only of intervals of length 2. Then every interval of M is inI. This is be
ause every interval of M is of length 2, with at least one ofits endpoints adja
ent to an element not in V . So PM�Q�V `Q(P (n;I)) =PI[M ℄�J�I(�1)jJ j = 0, sin
e R 6=M implies I 6= I[M ℄.By the Fa
et Lemma 4.4, the inequality (�1)jM j=2PM�Q�V LQ(P ) � 0gives a fa
et of Cn+1E .Now we show that under the added 
onditionM \ [a; a+2℄ = ; for every[a; a+ 2℄ 2 I[V ℄, the fa
ets obtained are distin
t.Note that two (M;V ) pairs 
an give the same inequality only if they havethe same M , be
ause LM is in
luded in the linear form for (M;V ), and Mis the minimal (by set in
lusion) set for whi
h LM is in the form. Now for�xed M , we show that (M;V1) and (M;V2) give distin
t linear inequalitieswhen V1 6= V2. Sin
e the sets V1 and V2 are di�erent, there is an interval[a; b℄ su
h that [a; b℄ o

urs in exa
tly one of I[V1℄ or I[V2℄. Let [a; b℄ bea maximal interval with this property. Without loss of generality assume[a; b℄ 2 I[V1℄. Then [a; b℄ is 
ontained in no interval of I[V2℄.Case 1. M \ [a; b℄ = ;. Then for every i, a � i � b � 1, the termL[i;i+1℄[M o

urs in the inequality for (M;V1). At least one of these termsdoes not o

ur in the inequality for (M;V2), be
ause [a; b℄ 6� V2.Case 2. M \ [a; b℄ = [a; a+ 1℄. Sin
e M � V2 and [a; b℄ 6� V2, b > a+ 1.By the strengthened hypothesis on M , b � a+ 3. Then for every i, a+ 2 �i � b� 1, the term L[i;i+1℄[M o

urs in the inequality for (M;V1). At leastone of these terms does not o

ur in the inequality for (M;V2), be
ause[a; b℄ 6� V2.Case 3. M \ [a; b℄ = [b� 1; b℄. The proof is similar to Case 2.Thus, with the 
ondition M \ [a; a + 2℄ = ; for every [a; a + 2℄ 2 I[V ℄,the fa
ets given by the theorem are all distin
t. 3Theorem 4.6 may be restated and interpreted in terms of the 
onvolution20



of 
hain operators. We refer the interested reader to Appendix B for thatapproa
h.With the aid of PORTA ([14℄), we 
al
ulated the Eulerian 
one for rankat most 7. Our input �les, the output generated by PORTA, and a LATEX�le identifying the valid inequalities obtained may be found at [5℄. It turnsout that Theorems 4.2 and 4.6 give all the extremes and fa
ets of the 
onefor rank at most 6. This fails at rank 7; there the fa
et inequalities all
ome from Proposition 3.1 and Theorem 3.2, but new poset 
onstru
tionsare needed for the extreme rays.Theorem 4.7 For rank n + 1 � 6, the 
losed 
one Cn+1E of 
ag ve
tors ofEulerian posets is �nitely generated. It has � nbn=2
� extreme rays, all gen-erated by the 
ag ve
tors of the limit posets DP (n;I) for I even intervalsystems on [1; n℄. It has � nbn=2
� fa
ets, all given by Proposition 4.5 andTheorem 4.6.Theorem 4.8 (i) The 
one C7E is �nitely generated, with 24 extreme rays.Twenty of the extreme rays are generated by the 
ag ve
tors of the limitposets DP (n;I) for I even interval systems on [1; 6℄.(ii) The 
one C7E has 23 fa
ets. Fifteen of the fa
ets are given by theinequalities of Theorem 4.6. Four additional fa
ets 
ome from the InequalityLemma 3.1. The remaining four 
ome from Theorem 3.2.The four spe
ial extreme rays of the rank 7 Eulerian 
one have 
orre-sponding rays in the half-Eulerian 
one. The generators for the half-Eulerian
one are all obtained by adding the 
ag ve
tors of limit posets asso
iatedwith noneven interval systems. The summands do not satisfy the 
onditionsof Proposition 2.3 for half-Eulerian posets, but the sum does. The 
al
ula-tions are easily done in terms of the `-ve
tor, using Proposition 2.8. Spe
i�
sequen
es of half-Eulerian posets have been 
onstru
ted whose 
ag ve
tors
onverge to these four extremes. The half-Eulerian posets are obtained by\gluing together" posets for ea
h summand. These are then 
onverted toEulerian posets by the horizontal doubling operation. Below are the sumsof limit posets used. Des
riptions of the half-Eulerian posets are found inAppendix A.Extreme 1: P (6; f[1; 2℄; [2; 6℄g + f[2; 5℄; [5; 6℄g)Extreme 2: P (6; f[1; 3℄; [3; 4℄; [4; 6℄g + f[1; 2℄; [2; 3℄g + f[4; 5℄; [5; 6℄g)Extreme 3: P (6; f[1; 2℄; [3; 4℄; [4; 5℄g + f[3; 5℄; [5; 6℄g + f[1; 2℄; [2; 5℄g)Extreme 4: P (6; f[1; 2℄; [2; 4℄g + f[2; 5℄; [5; 6℄g + f[2; 3℄; [3; 4℄; [5; 6℄g)21



Note that for rank at most 7, the two 
ones Cn+1D and Cn+1E are equal,be
ause the generators of extreme rays spe
i�ed in Theorems 4.7 and 4.8are horizontal doubles of half-Eulerian limit posets.Perhaps all the extreme rays of the half-Eulerian 
one (if not the Eulerian
one) 
an be obtained by gluing together Billera-Hetyei limit posets.A 
omplete des
ription of the 
losed 
one of 
ag ve
tors of Eulerianposets remains open, and, as mentioned before, the 
one is not even knownto be �nitely generated. We do not know if 
onvolutions of the inequalitiesof Proposition 3.1 and Theorem 3.2 
ompletely determine the 
one. A betterunderstanding of the 
onstru
tion of extreme rays as sums of Billera-Hetyeilimit posets would be valuable.The study of Eulerian posets is motivated in part by questions about
onvex polytopes. Is the 
one of 
ag ve
tors of all Eulerian posets the sameas or 
lose to the 
one of 
ag ve
tors of polytopes? The answer is no. The in-equalities of Proposition 3.1 
an be strengthened 
onsiderably for polytopes.The proof of Proposition 3.1 uses only the fa
t that in an Eulerian poset ea
hinterval has at least two elements of ea
h rank. For 
onvex polytopes, ea
hinterval is at least the size of a Boolean algebra of the same rank. Thus, forexample, where Proposition 3.1 gives that f1479(P ) � 2f179(P ) � 0 for Eu-lerian posets, for 
onvex polytopes the inequality f1479(P ) � 20f179(P ) � 0holds, be
ause the rank 6 Boolean algebra has �63� = 20 elements of rank 3.For ranks 4 through 7, we have veri�ed that none of the extreme rays of theEulerian 
one is in the 
losed 
one of 
ag ve
tors of 
onvex polytopes.Appendix A Some half-Eulerian limit posets of rank 7Here are the 
onstru
tions of half-Eulerian posets whose doubles give Ex-tremes 1, 2 and 3 of C7E . Extreme 4 is the dual of Extreme 3.In the following, C7 denotes a 
hain of rank 7.A.1 P (6; f[1; 2℄; [2; 6℄g+ f[2; 5℄; [5; 6℄g)Take DN[1;2℄DN[2;6℄ �C7� and DN[1;5℄DN[5;6℄ �C7�. Identify the elements of bothposets at rank 1 and at rank 6. Figure 1 represents the resulting poset forN = 2.
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Figure 1: P (6; f[1; 2℄; [2; 6℄g + f[2; 5℄; [5; 6℄g)A.2 P (6; f[1; 3℄; [3; 4℄; [4; 6℄g+ f[1; 2℄; [2; 3℄g+ f[4; 5℄; [5; 6℄g)Take P I(N) = DN[1;3℄DN[3;4℄DN[4;6℄DN+1[4;5℄ (C7)P II(N) = DN+1[1;2℄ DN[1;6℄DN[2;4℄(C7); andP III(N) = DN[1;5℄DN[3;5℄DN[5;6℄(C7):Identify the elements of P I(N) with the elements of P II(N) at ranks 1; 4; 5,and 6. Identify the elements of P I(N) with the elements of P III(N) atranks 1; 2; 3, and 6. Figure 2 represents the resulting poset for N = 2.23
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Figure 6: P (6; f[1; 2℄; [3; 4℄; [4; 5℄g + f[3; 5℄; [5; 6℄g + f[1; 2℄; [2; 5℄g)
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Appendix B Convolution of inequalitiesAs in Billera and Liu ([10℄) we view the 
ag f -ve
tor as a ve
tor of 
hainoperators �fn+1S : S � [1; n℄�; here fn+1S (P ) = fS(P ) if P is a graded posetof rank n+1 and 0 otherwise. The following multipli
ation of 
hain operatorsfnS (n � 1, S � [1; n � 1℄) was introdu
ed by Kalai in [15℄ and studied forEulerian posets by Billera and Liu in [10℄:fmS fnT = fm+nS[fmg[(T+m):It is straightforward that given a pair of valid linear inequalitiesF = XS�[1;m�1℄aSfmS � 0 and G = XT�[1;n�1℄ bSfnS � 0that hold for a hereditary 
lass of graded posets, the linear inequality FG � 0is also valid for the same 
lass. It was observed by Billera and Liu in [10,Proposition 1.3℄ that for the 
lass of all graded posets the 
onverse holds aswell: if FG � 0 is a valid inequality, then either both F � 0 and G � 0are valid inequalities, or both �F � 0 and �G � 0 are valid inequalities.It is easy to verify that the same equivalen
e is valid also for the 
lass of(half-)Eulerian posets.Proposition B.1 Consider F =PS�[1;m�1℄ aSfm and G =PT�[1;n�1℄ bSfnS .For these, FG � 0 holds for all half-Eulerian posets if and only if either bothF � 0 and G � 0 or both �F � 0 and �G � 0 hold for all half-Eulerianposets. The analogous statement is true for Eulerian posets.Only the \only if" impli
ation is not 
ompletely trivial. In the half-Eulerian
ase, all we need to observe is that for a pair (P;Q) of half-Eulerian posetsthe poset P Æ Q obtained by putting all elements of Q above all elementsof P , and identifying the top element of P with the bottom element of Q,is half-Eulerian. Moreover, if for posets P1; P2, and Q and forms F and G,F (P1) > 0, F (P2) < 0, and G(Q) > 0, then FG(P1 Æ Q) = F (P1)G(Q) > 0and FG(P2 ÆQ) = F (P2)G(Q) < 0. The same argument works for Eulerianposets using D2f�(P )g(P ÆQ) instead of P ÆQ.B.1 Unique fa
torizationA

ording to [10, Theorem 2.1℄ the asso
iative algebra generated by all
hain operators (whose domain is taken to be the 
lass of all graded posets)is the free polynomial ring in variables ff i; : i � 1g. If we take the29



degree of the variable f i; to be i, then linear 
ombinations of the formF = PS�[1;m�1℄ aSfmS be
ome homogeneous polynomials. Hen
e, as notedby Billera and Hetyei in [8℄, one 
an use a result of Cohn in [13, Theorem 3℄that the semigroup of homogeneous polynomials of a free graded asso
iativealgebra has unique fa
torization. The validity of an inequality may thus be
he
ked fa
tor-by-fa
tor.For Eulerian and half-Eulerian posets, it is advisable to 
onvert ourexpressions into the 
ag-` or 
ag-L forms, respe
tively. Straightforwardsubstitution into the de�nition shows`mS `nT = `m+nS[(T+m) and LmS LnT = 2Lm+nS[(T+m)This means that when we write [uS ℄ = LnS as the 
oeÆ
ient of the 
e-worduS , the 
onvolution of the forms PS�[1;m�1℄ aS [uS ℄ and PT�[1;n�1℄ bT [uT ℄ isthe form 2PS�[1;m�1℄PT�[1;n�1℄ aSbT [uS
uT ℄:Consider the free asso
iative algebra Rh
; ei generated by the letters 
and e. Given a homogeneous form F =PS�[1;n℄ aSLn+1S , set�(F ) = 12 n+1XS�[1;n℄aSuS
:Evidently the linear map � is a ring isomorphism between the ring of 
hainoperators (with the 
onvolution operation) and the left ideal Rh
; ei
 ofRh
; ei (with 
on
atenation of letters as multipli
ation). In terms of thisisomorphism we may rephrase [10, Proposition 3.2℄ as follows:Proposition B.2 Let IE be the two-sided ideal of all forms Pn+1S�[1;n℄ aSLn+1Svanishing on all Eulerian posets. Then �(IE ) is the ideal of Rh
; ei
 gener-ated by f[e2k+1
℄ : k � 0g.This statement is a dire
t 
onsequen
e of Corollary 1.3. The quotient ofRh
; ei
 by the ideal �(IE) is the left ideal Rh
; eei
 of the free non
ommu-tative algebra Rh
; eei. By Cohn's result ([13, Theorem 3℄) the ring Rh
; eeihas unique homogeneous fa
torization. Given an arbitrary homogeneousexpression E 2 Rh
; eei
, the homogeneous fa
tors 
 are uniquely identi-�able in its unique homogeneous fa
torization. Hen
e E may be uniquelywritten as a produ
t of homogeneous polynomials from Rh
; eei
 that areirredu
ible in Rh
; eei
. The analogous observations may be also made inthe half-Eulerian setting, and we have the following unique fa
torization.Proposition B.3 Every homogeneous linear form PS�[1;n℄ aS`n+1S orPS�[1;n℄ aSLn+1S , where S ranges over only even sets, 
an be uniquely writtenas a produ
t of irredu
ible expressions of the same kind.30



B.2 Convolution of fa
et inequalitiesBillera and Hetyei also showed in [8℄ that for the 
lass of all graded posetsthe produ
t of two fa
et inequalities is almost always a fa
et inequality,every ex
eption being a 
onsequen
e of the equalitiesfm; fn; = fm+nm = �fm+nm � fm+n; �+ fm+n; :In terms of 
onvolutions, Proposition 3.1 states that the produ
t of validinequalities of the form fn; � 0 and fni � 2fn; � 0 is a valid inequality forall Eulerian posets. Theorem 4.6 des
ribes a sub
lass of these produ
ts thatyield fa
et inequalities. Using ideas extra
ted from the proof, one 
an showthe following, somewhat strengthened statements.Proposition B.4 If F � 0 de�nes a fa
et of Cn+1E , then F (fk+11 �2fk+1; ) �0 de�nes a fa
et of Cn+k+2E .Proposition B.5 If F � 0 de�nes a fa
et of Cn+1E , and F 
an be writtenas F = XS�[1;n℄aSLn+1Swhere S ranges over only even sets that 
ontain n, then Ffk+1; � 0 andFf1; f1; � 0 de�ne fa
ets of Cn+k+2E and Cn+3E , respe
tively.It seems to be diÆ
ult, however, even in the 
ase of these simple fa
-tors, to predi
t whi
h produ
ts yield fa
et inequalities. For example (f51 �2f5; )f1; = (f61 � 2f6; ) + 12 (f31 � 2f3; )(f31 � 2f3; ) � 0 does not de�ne a fa
et ofC6E , while it 
an be shown that (f51 � 2f5; )f3; � 0 de�nes a fa
et of C8E .Referen
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