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numbers of polytopes see [16℄. A major reent ontribution is the determi-nation of the losed one of ag vetors of all graded posets by Billera andHetyei ([8℄). Results on ag vetors and other invariants of Eulerian posetsand speial lasses of them are surveyed in [21℄.Our goal has been to desribe the losed one of ag f -vetors of Eulerianpartially ordered sets. This problem was posed expliitly in [10℄. There isno reason to expet that every positive integer vetor in this one is the agvetor of some Eulerian poset. Nonlinear inequalities may ome into play,but their analysis is muh more diÆult. We fous here on linear inequalitiesvalid for all Eulerian ag vetors and the Eulerian posets with extreme agvetors. This approah has been used previously to study f -vetors andag vetors of various lasses of posets. See Bayer ([2℄) on four-dimensionalpolytopes, Babson, Billera and Chan ([1℄) on ubial polytopes, and Billeraand Hetyei ([8, 9℄) on graded posets and planar posets. In all ases wherethe one is known, it turns out to be �nitely generated; this is veri�ed onlyby �nding a omplete, �nite set of faets or extremes. We expet that thesame holds for the one of ag vetors of Eulerian posets.Finding the faets of the one means �nding all ruial inequalities sat-is�ed by Eulerian ag vetors. One set of inequalities (given in Proposi-tion 3.1) follows easily from the de�nition of Eulerian. A seond set provedhere (Theorem 3.2) generalizes an inequality found by Billera and Liu ([10℄).We do not know if these two lasses of inequalities are enough to determineompletely the one.Billera and Hetyei ([8℄) developed a poset onstrution that yields all theextreme rays of the one of ag vetors of graded posets. By introduingthe onept of a \half-Eulerian" poset, we are able to use the Billera-Hetyeionstrution to �nd extreme rays of the Eulerian one. For rank n+ 1 thisgives � nbn=2� extreme rays. Not all the extreme rays ome this way, however,and we are fored to use more ompliated onstrutions of extreme Eulerianposets. These onstrutions are suggested by the e-index (a variation ofthe d-index).The ability to explore the one in low ranks using the omputer pakagePORTA ([14℄) was ruial to this projet. The straightforward desriptionof the one in ranks at most 6 breaks down at rank 7. This leads us to newlasses of inequalities and extremes.The remainder of this setion provides de�nitions and other bakground,and the de�nition of the ag L-vetor, whih simpli�es the alulations. Se-tion 2 desribes the extreme rays of the general graded one, de�nes half-Eulerian posets, identi�es whih limit posets are half-Eulerian, and omputesthe orresponding d-indies. Setion 3 gives two general lasses of inequal-2



ities on Eulerian ag vetors. Setion 4 shows that the half-Eulerian limitposets all give extremes of the Eulerian one, identi�es some inequalities inall ranks as faet-induing, and desribes ompletely the one for rank atmost 7.1.1 BakgroundA graded poset P is a �nite partially ordered set with a unique minimumelement 0̂, a unique maximum element 1̂, and a rank funtion � : P �! Nsatisfying �(0̂) = 0, and �(y) � �(x) = 1 whenever y 2 P overs x 2 P .The rank �(P ) of a graded poset P is the rank of its maximum element.Given a graded poset P of rank n+1 and a subset S of f1; 2; : : : ; ng (whihwe abbreviate as [1; n℄), de�ne the S{rank{seleted subposet of P to be theposet PS = fx 2 P : �(x) 2 Sg [ f0̂; 1̂g:Denote by fS(P ) the number of maximal hains of PS . Equivalently, fS(P ) isthe number of hains x1 < � � � < xjSj in P suh that f�(x1); : : : ; �(xjSj)g = S.The vetor (fS(P ) : S � [1; n℄) is alled the ag f -vetor of P . Wheneverit does not ause onfusion, we write fs1 ::: sk rather than ffs1;:::;skg; in par-tiular, ffmg is always denoted fm.Various properties of the ag f -vetor are more easily seen in di�erentbases. An often used equivalent enoding is the ag h-vetor (hS(P ) : S � [1; n℄)given by the formula hS(P ) = XT�S(�1)jSnT jfT (P );or, equivalently, fS(P ) = XT�S hT (P ):The ab-index 	P (a; b) of P is a generating funtion for the ag h-vetor. Itis the following polynomial in the nonommuting variables a and b:	P (a; b) = XS�[1;n℄hS(P )uS ; (1)where uS is the monomial u1u2 � � � un with ui = a if i 62 S, and ui = b ifi 2 S.The M�obius funtion of a graded poset P is de�ned reursively for anysubinterval of P by the formula�([x; y℄) = ( 1 if x = y;�Px�z<y �([x; z℄) otherwise:3



Equivalently, by Philip Hall's theorem, the M�obius funtion of a graded posetP of rank n+1 is the redued Euler harateristi of the order omplex, i.e.,it is given by the formula�(P ) = XS�[1;n℄(�1)jSj+1fS(P ): (2)(See [19, Proposition 3.8.5℄.)A graded poset P is Eulerian if the M�obius funtion of every interval[x; y℄ is given by �([x; y℄) = (�1)�(x;y). (Here �(x; y) = �([x; y℄) = �(y) ��(x).)The �rst haraterization of all linear equalities holding for the ag f -vetors of all Eulerian posets was given by Bayer and Billera in [4℄. Theequations of the theorem are alled the generalized Dehn-Sommerville equa-tions. Call the subspae of R2n they determine the Eulerian subspae; itsdimension is the Fibonai number en (e0 = e1 = 1, en = en�1 + en�2).Theorem 1.1 (Bayer and Billera) Every linear equality holding for theag f -vetor of all Eulerian posets of rank n + 1 is a onsequene of theequalities �(�1)i�1 + (�1)k+1� fS + kXj=i(�1)jfS[fjg = 0for S � [1; n℄ and [i; k℄ a maximal interval of [1; n℄ n S.Fine disovered that the ab-index of a polytope an be written as apolynomial in the nonommuting variables  = a + b and d = ab + ba.Bayer and Klapper ([6℄) proved that for a graded poset P , the equations ofTheorem 1.1 hold if and only if the ab-index is a polynomial with integeroeÆients in  and d. This polynomial is alled the d-index of P . Stanley([20℄) gives an expliit reursion for the d-index in terms of intervals of Pfor Eulerian posets. (He thus gives another proof of the existene of thed-index for Eulerian posets.)1.2 The ag `-vetor and the ag L-vetorThe introdution of another vetor equivalent to the ag f -vetor simpli�esalulations.De�nition 1 The ag `-vetor of a graded partially ordered set P of rankn+ 1 is the vetor (`S(P ) : S � [1; n℄), where`S(P ) = (�1)n�jSj XT�[1;n℄nS(�1)jT jfT (P ):4



As a onsequene, fS(P ) = XT�[1;n℄nS `T (P ): (3)The ag `-vetor was �rst onsidered by Billera and Hetyei ([8℄) while de-sribing all linear inequalities holding for the ag f -vetors of all gradedpartially ordered sets. It turned out to give a sparse representation of theone of ag f -vetors desribed in that paper.A variant signi�ant for Eulerian posets is the ag L-vetor.De�nition 2 The ag L-vetor of a graded partially ordered set P of rankn+ 1 is the vetor (LS(P ) : S � [1; n℄), whereLS(P ) = (�1)n�jSj XT�[1;n℄nS��12�jT j fT (P ):Inverting the relation of the de�nition givesfS(P ) = 2jSj XT�[1;n℄nSLT (P ):When the poset P is Eulerian, the parameters LS(P ) are atually theoeÆients of the e-index of the poset P . The e-index was introdued byStanley ([20℄) as an alternative way of viewing the d-index. The letter ontinues to stand for a+b; now let e = a�b. The ab-index of a poset an bewritten in terms of  and d if and only if it an be written in terms of  andee. It is easy to verify that LS(P ) is exatly the oeÆient in the e-indexof P of the word uS = u1u2 � � � un where ui =  if i 62 S, and ui = e ifi 2 S. Sine the existene of the d-index is equivalent to the validity of thegeneralized Dehn-Sommerville equations, we get the following proposition.(It an be proved diretly from the de�nition of the ag L-vetor, yielding analternative way to prove the existene of the d-index for Eulerian posets.)A subset S � [1; n℄ is even if all the maximal intervals ontained in S are ofeven length.Proposition 1.2 The generalized Dehn-Sommerville relations hold for aposet P if and only if LS(P ) = 0 whenever S is not an even set.The generalized Dehn-Sommerville relations hold (by hane) for somenonEulerian posets. A poset is Eulerian, however, if these relations hold forall intervals of the poset.Corollary 1.3 A graded partially ordered set is Eulerian if and only ifLS([x; y℄) = 0 for every interval [x; y℄ � P and every subset S of [1; �(x; y) � 1℄that is not an even set. 5



2 Half-Eulerian posetsIn this setion we �nd speial points in the losed one of ag vetors ofEulerian posets. First onsider the extremes of the losed one of ag vetorsof all graded posets, found by Billera and Hetyei ([8℄).De�nition 3 Given a graded poset P of rank n+ 1, an interval I � [1; n℄,and a positive integer k, DkI (P ) is the graded poset obtained from P byreplaing every x 2 P with rank in I by k elements x1; : : : ; xk and byimposing the following relations.(i) If for x; y 2 P , �(x) 2 I and �(y) 62 I, then xi < y in DkI (P ) if andonly if x < y in P , and y < xi in DkI (P ) if and only if y < x in P .(ii) If f�(x); �(y)g � I, then xi < yj in DkI (P ) if and only if i = j andx < y in P .Clearly DkIP is a graded poset of the same rank as P . Its ag f -vetoran be omputed from that of P in a straightforward manner.An interval system on [1; n℄ is any set of subintervals of [1; n℄ that form anantihain (that is, no interval is ontained in another). (Muh of what followsholds even if the intervals do not form an antihain, but the assumptionsimpli�es the statements of some theorems.) For any interval system I on[1; n℄, and any positive integer N , the poset P (n;I; N) is de�ned to be theposet obtained from a hain of rank n+ 1 by applying DNI for all I 2 I. Itdoes not matter in whih order these operators are applied. (Di�erent valuesof N an be used for eah interval I, but we do not need that generalityhere.) Consider the sequene of posets for a �xed interval system I as Ngoes to in�nity. Billera and Hetyei ([8℄) showed that the normalized agvetors of suh a sequene onverge to a vetor on an extreme ray of theone of ag vetors of all graded posets. More preisely,Theorem 2.1 (Billera and Hetyei) Suppose I is an interval system ofk intervals on [1; n℄. Then the vetor� limN!1 1Nk fS(P (n;I; N)) : S � [1; n℄�generates an extreme ray of the one of ag vetors of all graded posets ofrank n+ 1. Moreover, all extreme rays are generated in this way.Unfortunately, none of the posets P (n;I; N) are Eulerian, and noneof these extreme rays are ontained in the losed one of ag vetors of6



Eulerian posets. However some of the posets are \half-Eulerian", and leadus to extreme rays of the Eulerian one.For the interval system I = f[1; 1℄; [2; 2℄; : : : ; [n; n℄g, abbreviate D2I(P )as DP , and all this the horizontal double of P . Thus the horizontal doubleof P is the poset obtained from P by replaing every x 2 P n f0̂; 1̂g withtwo elements x1; x2, suh that 0̂ and 1̂ remain the minimum and maximumelements of the partially ordered set, and xi < yj if and only if x < y in P .(In the Hasse diagram of P , every edge is replaed by 1.)De�nition 4 A half-Eulerian poset is a graded partially ordered set whosehorizontal double is Eulerian.The ag f -vetors of P and its horizontal double are onneted by theformula fS(DP ) = 2jSjfS(P ). Thus,LS(DP ) = `S(P ): (4)Applying the de�nition of Eulerian to the horizontal double of a posetwe getProposition 2.2 A graded partially ordered set P is half-Eulerian if andonly if for every interval [x; y℄ of P ,�(x;y)�1Xi=1 (�1)i�1fi([x; y℄) = (1 + (�1)�(x;y))=2:Corollary 1.3 an now be restated for half-Eulerian posets.Proposition 2.3 A graded partially ordered set is half-Eulerian if and onlyif `S([x; y℄) = 0 for every interval [x; y℄ � P and every subset S of [1; �(x; y) � 1℄that is not an even set.The ag vetors of the horizontal doubles of half-Eulerian posets span theEulerian subspae, the subspae de�ned by the generalized Dehn-Sommervilleequations. But the ones they determine may be di�erent. Write Cn+1E forthe losed one of ag vetors of Eulerian posets of rank n+1, and Cn+1D forthe losed one of ag vetors of horizontal doubles of half-Eulerian posets.We do not know if the inlusion Cn+1D � Cn+1E is atually equality.For whih interval systems I is P (n;I; N) half-Eulerian?De�nition 5 An interval system I on [1; n℄ is even if for every pair ofintervals I; J 2 I the intersetion I \J has an even number of elements. (Inpartiular, jIj must be even for every I 2 I.)7



Our goal is to show that the posets P (n;I; N) are half-Eulerian if andonly if I is an even interval system. For this we need to understand theintervals of the posets P (n; I; N).Proposition 2.4 The interval [x; y℄ � P (n;I; N) is isomorphi toP (�(x; y)� 1;J ; N), where J = fI ��(x) : I 2 I; I � [�(x)+1; �(y)� 1℄g.Proof: Let �(x) = r and �(y) = s. Construt P (n;I; N) by applying theoperators DNI for all I 2 I to a hain. Sine the order of applying theseoperators is arbitrary, we may hoose to apply �rst those for whih I isnot a subset of [r + 1; s � 1℄. At this point for every x0 of rank r and y0of rank s with y0 � x0, the interval [x0; y0℄ is isomorphi to a hain of rank�(x0; y0). Applying the remaining operators DNI leaves the elements of rankat most r or of rank at least s unhanged, and has the same e�et on [x0; y0℄as applying the operators DNI�r to a hain of rank �(x0; y0). 3The e�et on the ag f -vetor of applying the operator DNI to a posetof rank n+ 1 is given by the formulafS(DNI (P )) = ( NfS(P ) if I \ S 6= ;,fS(P ) otherwise. (5)This enables us to write an `-vetor formula.Lemma 2.5 For P a graded poset of rank n+1, S � [1; n℄, and N a positiveinteger, `S(DNI (P )) = N`S(P )� (N � 1) XT[I=S `T (P ): (6)Proof: From the de�nition of `S and equation (5),`S(DNI (P )) = (�1)n�jSj XR�[1;n℄nS(�1)jRjfR(DNI (P ))= (�1)n�jSj XR�[1;n℄nS(�1)jRjNfR(P )� (�1)n�jSj XR�[1;n℄nSR�[1;n℄nI(�1)jRj(N � 1)fR(P )= N`S(P )� (�1)n�jSj XR�[1;n℄nSR�[1;n℄nI (�1)jRj(N � 1)fR(P ):8



By (3), the oeÆient in �(�1)n�jSjPR�[1;n℄nSR�[1;n℄nI (�1)jRj(N�1)fR(P ) of `T (P )is �(N � 1)(�1)n�jSj XR�[1;n℄nSR�[1;n℄n(T[I)(�1)jRj ;whih is an empty sum if (T [ I) is not ontained in S, zero if (T [ I) isproperly ontained in S, and �(N � 1)(�1)n�jSj(�1)j[1;n℄nSj = �(N � 1) if(T [ I) = S. This gives the reursion of the lemma. 3From this we an determine whih of the posets P (n;I; N) are half-Eulerian.Proposition 2.6 Let I be an interval system on [1; n℄.1. If I is an even system of intervals, then for all N the partially orderedset P (n;I; N) is half-Eulerian.2. If for some N > 1, P (n;I; N) is half-Eulerian, then I is an evensystem of intervals.Proof: Using Lemma 2.5 we an show by indution on jIj that for everyN , `n+1S (P (n;I; N)) is zero unless S is the union of some intervals of I.In partiular, if I is an even system of intervals, then `S (P (n;I; N)) = 0whenever S is not an even set. The same observation holds for every interval[x; y℄ � P (n;I; N) as well, sine by Proposition 2.4 [x; y℄ is isomorphi toP (m;J ; N) for somem � n and some even system of intervals J . Thereforethe onditions of Proposition 2.3 are satis�ed by P (n;I; N) for every N , ifI is an even system of intervals.Now assume I is a system of intervals that is not even. First onsiderthe ase where I ontains an interval Im = [a; b℄ with b � a even (heneIm is odd). Let J = fIm � a + 1g = f[1; b � a + 1℄g. For S nonempty,fS(P (b� a+ 1;J ; N)) = N , so`[1;b�a+1℄(P (b� a+ 1;J ; N))= XT�[1;b�a+1℄(�1)jT jfT (P (b� a+ 1;J ; N))= 1 + XT�[1;b�a+1℄T 6=; (�1)jT jN = 1�N:So `[1;b�a+1℄(P (b � a + 1;J ; N)) 6= 0 for N > 1. Fix N > 1, and hoose xand y in P (n;I; N) with �(x) = a � 1, �(y) = b + 1, and x � y. Then by9



Proposition 2.4, `[1;�(x;y)�1℄([x; y℄) = `[1;b�a+1℄(P (b� a+1;J ; N)) 6= 0, withj[1; b � a+ 1℄j odd. So P (n; I; N) is not half-Eulerian.Now suppose I ontains only even intervals, but some two intervals havean odd overlap. Let Ip = [a; d℄ and Iq = [; b℄, where a <  � d < b andd� a and b�  are odd, but d�  is even. Then b� a is also even. We showthat we may assume no other interval of I is in the union Ip [ Iq. SupposeIr = [e; f ℄ is another interval of I with [e; f ℄ � [a; b℄ (and f � e is odd).Sine I is an antihain, a < e <  � d < f < b. If e � a is even, thenjIq \ Irj = j[; f ℄j = f �  + 1 = (f � e) + (e � a) � (d � a) + (d � ) + 1,whih is odd, beause it is the sum of three odds and two evens. If e� a isodd, then jIp \ Irj = j[e; d℄j = d� e+1 = (d� a)� (e� a) + 1, whih is oddbeause it is the sum of three odds. Thus, if two intervals of I have oddintersetion and their union ontains a third interval of I, then two intervalsof I with smaller union have odd intersetion.So we may assume Ip = [a; d℄ and Iq = [; b℄ have odd intersetion, andtheir union [a; b℄ ontains no other interval of I. Let J = fIp � a + 1;Iq � a+ 1g = f[1; d � a+ 1℄; [ � a+ 1; b� a+ 1℄g. ThenfS(P (b� a+ 1;J ; N))= 8><>: 1 if S = ;N2 if S \ (Ip � a+ 1) 6= ; and S \ (Iq � a+ 1) 6= ;N otherwise.Sò [1;b�a+1℄(P (b� a+ 1;J ; N))= XT�[1;b�a+1℄(�1)jT jfT (P (b� a+ 1;J ; N))= XT�[1;b�a+1℄(�1)jT jN2 + XT�[1;�a℄(�1)jT j(N �N2)+ XT�[d�a+2;b�a+1℄(�1)jT j(N �N2) + (1� 2N +N2) = (1�N)2:So `[1;b�a+1℄(P (b � a + 1;J ; N)) 6= 0 for N > 1. Fix N > 1, and hoose xand y in P (n;I; N) with �(x) = a � 1, �(y) = b + 1, and x � y. Then byProposition 2.4, `[1;�(x;y)�1℄([x; y℄) = `[1;b�a+1℄(P (b� a+1;J ; N)) 6= 0, withj[1; b � a+ 1℄j odd. So P (n;I; N) is not half-Eulerian. 3As will be seen later, even interval systems give rise to extreme rays ofthe one of ag vetors of Eulerian posets. It is of interest, therefore, toount them. 10



Proposition 2.7 The number of even interval systems on [1; n℄ is � nbn=2�.Proof: We de�ne a one-to-one orrespondene between even interval sys-tems on [1; n℄ and sequenes � = (�1; �2; : : : ; �n) 2 f�1; 1gn satisfyingPi �i = 0 if n is even and Pi �i = 1 if n is odd. Clearly there are � nbn=2�suh sequenes.For I an even interval system, de�ne �(I) = (�1; �2; : : : ; �n) 2 f�1; 1gn,where �i = (�1)i if i is an endpoint of an interval of I, and �i = (�1)i�1otherwise. (Note that for an even interval system, no number an be anendpoint of more than one interval.) For I an even interval system, summing(�1)i over the endpoints of intervals gives 0. SonXi=1 �i = nXi=1(�1)i�1 + Xi endpointof interval 2(�1)i= nXi=1(�1)i�1 = ( 0 if n is even1 if n is odd :On the other hand, given a sequene � = (�1; �2; : : : ; �n) 2 f�1; 1gnsatisfyingPi �i = 0 if n is even andPi �i = 1 if n is odd, onstrut an eveninterval system as follows. Let s1 < s2 < � � � < sk be the sequene of indiess for whih �s = (�1)s. Then Pni=1(�1)i�1 = Pni=1 �i = Pni=1(�1)i�1 +Pkj=1 2(�1)sj , so Pkj=1(�1)sj = 0. Thus the sequene of sj's ontains thesame number of even numbers as odd. Construt an interval system I =f[a1; b1℄; [a2; b2℄; : : : ; [am; bm℄g (2m = k) reursively as follows. Let a1 = s1and let b1 = sj where j is the least index suh that s1 and sj are of oppositeparity. Then I = [a1; b1℄[I 0, where I 0 is the interval system assoiated withs2 < s3 < s4 < � � � < sk with b1 = sj removed. Clearly [a1; b1℄ is of evenlength. If [a1; b1℄\[ai; bi℄ 6= ; for some interval [ai; bi℄ of I 0, then ai < b1, so bythe hoie of b1, ai has the same parity as a1. Thus [a1; b1℄\ [ai; bi℄ = [ai; b1℄is of even length. Furthermore, bi and b1 are of the same parity, sine ai anda1 are, so again by the hoie of b1, bi > b1. So the interval [ai; bi℄ is notontained in the interval [a1; b1℄. The interval system f[am; bm℄g, is even, soby indution I is an even interval system.These onstrutions are inverses, giving the desired bijetion. 3Reall that Billera and Hetyei ([8℄) found extremes of the one of agvetors of graded posets as limits of the normalized ag vetors of theposets P (n;I; N). The next proposition follows easily by indution fromLemma 2.5. 11



Proposition 2.8 Let I = fI1; I2; : : : ; Ikg be a system of k � 0 intervalson [1; n℄. ThenlimN�!1 1Nk `S (P (n;I; N))= kXj=0(�1)j ���n1 � i1 < � � � < ij � k : Ii1 [ � � � [ Iij = So��� :Write fS(P (n;I)) = limN!1 fS(P (n;I; N))=N jIj. The vetor thesenumbers form (as S ranges over all subsets of [1; n℄) is not the ag f -vetor of an atual poset, but it is in the losed one of ag f -vetorsof all graded posets. We all the symbol P (n;I) a \limit poset" and re-fer to the ag vetor of the limit poset. If I is an even interval system,then (fS(P (n;I)) : S � [1; n℄) is in the losed one of ag vetors ofhalf-Eulerian posets. To get Eulerian posets the horizontal double oper-ator is applied to P (n;I; N). The vetor (fS(DP (n;I)) : S � [1; n℄) isde�ned as a limit of the resulting normalized ag f -vetors, and satis�esfS(DP (n;I)) = 2jSjfS(P (n; I)). It lies in the one Cn+1D of ag vetors ofdoubles of half-Eulerian posets, a subone of the Eulerian one.Reall (equation (4)) that the `-vetor of a poset P equals the L-vetor ofits horizontal double DP . The same holds after passing to the limit posets.Thus, Proposition 2.8 givesLS(DP (n;I)) = kXj=0(�1)j ���n1 � i1 < � � � < ij � k : Ii1 [ � � � [ Iij = So��� ;where I = fI1; I2; : : : ; Ikg.We look at the assoiated d-indies of the \doubled limit posets." Thinkof a word in  and d as a string with eah  oupying one position and eahd oupying two positions. The weight of a d-word w is then the number ofpositions of the string. Assoiated to eah d-word w is the even set S(w)onsisting of the positions oupied by the d's.Proposition 2.9 For eah d-word w with k d's and weight n, there existsan even interval system Iw for whih the d-index of DP (n;Iw) is 2kw.Proof: Fix a d-word w with k d's and weight n. Write the elements ofS(w) in inreasing order as i1, i1 + 1, i2, i2 + 1, . . . , ik, ik + 1, and let Iwbe the interval system f[i1; i1 +1℄; [i2; i2 +1℄; : : : ; [ik; ik + 1℄g. Let � = 2kw.Rewrite the d-polynomial � as a e-polynomial. Reall from Setions 1.112



and 1.2 that  = a+ b, d = ab+ ba, and e = a� b, so d = (� ee)=2. Thus,� is rewritten as a sum of 2k terms. Eah is the result of replaing somesubset of the d's by , and the rest by ee; the oeÆient is �1, dependingon whether the number of d's replaed by ee is even or odd. Thus2kw = XJ�[1;k℄(�1)jJjwJ ;where wJ = w1w2 � � �wn, with wij = wij+1 = e if j 2 J and the remainingwi's are . By the L-vetor version of Proposition 2.8, this is preisely thee-index of DP (n;Iw). 3In [20℄ Stanley �rst found for eah d-word w a sequene of Eulerianposets whose normalized d-indies onverge to w. Our limit posets arelosely related to Stanley's, but this partiular onstrution highlights theimportant link between the half-Eulerian and Eulerian ones.Before turning to inequalities satis�ed by the ag vetors of Eulerianposets, we onsider the question of whether the two ones Cn+1D and Cn+1Eare equal. For low ranks the two ones are the same, as seen below. Weknow of no example in any rank of an Eulerian poset whose ag vetor isnot ontained in the one Cn+1D of doubled half-Eulerian posets. To look forsuh an example we turn to the best known examples of Eulerian posets,the fae latties of polytopes. In [20℄ Stanley proved the nonnegativity ofthe d-index for \S-shellable regular CW-spheres", a lass of Eulerian posetsthat inludes all polytopes. By a result of Billera, Ehrenborg, and Readdy([7℄), the lattie of regions of any oriented matroid also has a nonnegative d-index. (Some entries in the d-index are nonnegative for all Eulerian posets;see [3℄ for details.) Proposition 2.9 implies that nonnegative d-indies (andthe assoiated ag vetors) are in the one generated by the d-indies (agvetors) of the doubles of limit posets assoiated with even interval systems.Corollary 2.10 Cn+1D ontains the ag vetors of all Eulerian posets withnonnegative d-indies. This inludes the fae latties of polytopes and thelatties of regions of oriented matroids.Conjeture 2.11 The losed one Cn+1E of ag vetors of Eulerian posetsis the same as the losed one Cn+1D of ag vetors of horizontal doubles ofhalf-Eulerian posets.3 InequalitiesThroughout this setion we use the following notation.13



De�nition 6 The interval system I[S℄ of a set S � [1; n℄ is the family ofintervals I[S℄ = f[a1; b1℄; : : : ; [ak; bk℄g, where S = [a1; b1℄ [ � � � [ [ak; bk℄ andbi�1 < ai� 1 for i � 2. In other words, I[S℄ is the olletion of the maximalintervals ontained in S.Note that S is an even set if and only if I[S℄ is an even interval system.The following ag vetor forms an be proved nonnegative by writingthem as onvolutions of basi nonnegative forms ([10, 15℄). (See AppendixB.) The issue of whether they give all linear inequalities on ag vetorsof Eulerian posets was raised by Billera and Liu (see the disussion afterProposition 1.3 in [10℄). We give here a simple diret argument for theirnonnegativity that avoids onvolutions.Proposition 3.1 (Inequality Lemma) Let T and V be subsets of [1; n℄with T � V , suh that for every I 2 I[V ℄, jI \ T j � 1. Write S = [1; n℄ n V .For P any rank n+ 1 Eulerian poset,XR�T (�2)jTnRjfS[R(P ) � 0:Equivalently, (�1)jT j XT�Q�V LQ(P ) � 0:Proof: The idea is that sine no two elements of T are in the same gap ofS, elements with ranks in T an be inserted independently in hains withrank set S. For C an S-hain (i.e., a hain with rank set S) and t 2 T , letnt(C) be the number of rank t elements x 2 P suh that C [ fxg is a hainof P . Sine every interval of an Eulerian poset is Eulerian, nt(C) � 2 for allC and t. SoXR�T(�2)jTnRjfS[R(P ) = XR�T (�2)jTnRj XC an S-hain Yt2Rnt(C)= XC an S-hain XR�T(�2)jTnRj Yt2Rnt(C)= XC an S-hainYt2T(nt(C)� 2) � 0:So the ag vetor inequality is proved. The seond inequality is simply thetranslation into L-vetor form. 3Here are some new inequalities. 14



Theorem 3.2 Let 1 � i < j < k � n. For P any rank n + 1 Eulerianposet, fik(P )� 2fi(P )� 2fk(P ) + 2fj(P ) � 0:Proof: First order the rank j elements of P in the following way. Chooseany order, G1, G2, . . . , Gm for the omponents of the Hasse diagram of therank-seleted poset Pfi;j;kg. For eah rank j element y of P , identify theomponent ontaining y by y 2 Gg(y). Order the rank j elements of P inany way onsistent with the ordering of omponents. That is, hoose anorder y1, y2, . . . , yr suh that ys < yt implies g(ys) � g(yt).A rank i element x belongs to yq if q is the least index suh that x < yqin P . Write Iq for the number of rank i elements belonging to yq, and I 0q forthe number of rank i elements x suh that x < yq, but x does not belongto yq. Similarly, a rank k element z belongs to yq if q is the least index suhthat yq < z in P . Write Kq for the number of rank k elements belongingto yq, and K 0q for the number of rank k elements z suh that yq < z, but zdoes not belong to yq. Note that Iq + I 0q � 2 and Kq +K 0q � 2, sine P isEulerian. A ag x < z belongs to yq if x < yq < z and q is the least indexsuh that either x < yq or yq < z.Let F = fik(P )� 2fi(P )� 2fk(P ) + 2fj(P ). Let Fq be the ontributionto F by elements and ags belonging to yq. Thus,Fq = IqKq + I 0qKq + IqK 0q � 2Iq � 2Kq + 2:If I 0q � 2, then Fq = Iq(Kq +K 0q � 2) + (I 0q � 2)Kq + 2 � 2.If I 0q = K 0q = 0, then Fq = (Iq � 2)(Kq � 2)� 2 � �2.In all other ases it is easy to hek that Fq � 0.Suppose that the rank j elements in omponent G` are ys, ys+1, . . . , yt.Then I 0s = K 0s = 0, so Fs � �2. Furthermore, It = Kt = 0, beause anyrank i element x related to yt must also be related to at least one other rankj element, and it is in the same omponent. That rank j element has indexless than t, so x does not belong to yt. This in turn implies I 0t � 2, so Ft � 2.For all q, s < q < t, either I 0q > 0 or K 0q > 0, by the onnetivity of theomponent, so Fq � 0. Thus Ptq=s Fq � 0. This is true for eah omponentG`, so F =Prq=1 Fq � 0. 3These inequalities an be used to generate others by onvolution (seeAppendix B.)Evaluating the ag vetor inequalities of Proposition 3.1 for the horizon-tal double DP of a half-Eulerian poset P gives the inequalities, for S and T15



satisfying the hypotheses of Proposition 3.1,XR�T (�1)jTnRjfS[R(P ) � 0: (7)These inequalities are valid not just for half-Eulerian posets but for allgraded posets. The proof of Proposition 3.1 uses only the fat that in everyopen interval of an Eulerian poset there are at least two elements of eahrank. If the proof is rewritten using the assumption that in every openinterval there is at least one element of eah rank, the inequalities (7) areproved for all graded posets.Similarly, the ag vetor inequalities of Theorem 3.2 give inequalities forhalf-Eulerian posets,fik(P )� fi(P )� fk(P ) + fj(P ) � 0:The proof of Theorem 3.2 an be modi�ed in the same way to show theseinequalities are valid for all graded posets. The �rst instane of this lass ofinequalities was found by Billera and Liu ([10℄).We onjeture that all inequalities valid for half-Eulerian posets omefrom inequalities valid for all graded posets. Inequalities for half-Eulerianposets are to be interpreted as onditions in the subspae of R2n spannedby ag vetors of half-Eulerian posets, but we are desribing them in R2n .Giving inequalities using linear forms in the ag numbers fS over R2n , thestatement is as follows.Conjeture 3.3 Every linear form that is nonnegative for the ag vetorsof all half-Eulerian posets is the sum of a linear form that is nonnegative forall graded posets and a linear form that is zero for all half-Eulerian posets.4 Extreme Rays and Faets of the ConeWe have desribed some points in the Eulerian one Cn+1E and some inequal-ities satis�ed by all points in the one. We turn now to identifying whih ofthese give extreme rays and faets.If I is an even interval system, then (fS(P (n;I)) : S � [1; n℄) is on anextreme ray in the losed one of ag vetors of all graded posets, and is inthe subone of ag f -vetors of half-Eulerian posets. Therefore it is on anextreme ray of the subone. By Proposition 2.7 this gives � nbn=2� extremerays for the rank n+ 1 one. 16



Proposition 4.1 For every even interval system I, the ag vetor of thelimit poset P (n;I) generates an extreme ray of the one of ag vetors ofhalf-Eulerian posets.What does this say about the extreme rays of the one of ag vetorsof Eulerian posets? For every even interval system I, the ag vetor ofDP (n;I) lies on an extreme ray of the subone Cn+1D , but we annot onludediretly that it lies on an extreme ray of the one Cn+1E . A separate proof isneeded.For the following proofs, we use the omputation of `Q(P (n;I)) (andLQ(DP (n;I))) from the deompositions of Q as the union of intervals of I(Proposition 2.8).Theorem 4.2 For every even interval system I, the ag vetor of the dou-bled limit poset DP (n;I) generates an extreme ray of the one of ag vetorsof Eulerian posets.Proof: We work in the losed one of L-vetors of Eulerian posets. Theone of L-vetors of Eulerian posets is ontained in the subspae of R2ndetermined by the equations LS = 0 for S not an even set. To prove thatthe L-vetor of DP (n;I) generates an extreme ray, we show that it lies onlinearly independent supporting hyperplanes, one for eah nonempty evenset V in [1; n℄. Fix an even interval system I. For eah nonempty evenset V � [1; n℄, we �nd a set T suh that T and V satisfy the hypothesis ofProposition 3.1 and PT�Q�V LQ(DP (n;I)) = 0.Case 1. Suppose V is the union of some intervals in I. Let I1, I2,. . . , Ik be all the intervals of I ontained in V . Set T = ;. Then foreah subset J � [1; k℄, the orresponding union of intervals ontributes(�1)jJj to LQ(DP (n;I)), for Q = [j2JIj. Thus PT�Q�V LQ(DP (n;I)) =PJ�[1;k℄(�1)jJj = 0.Case 2. If V is not the union of some intervals in I, let W be the unionof all those intervals of I ontained in V . Choose t 2 V nW , and set T = ftg.For Q � V , LQ(DP (n;I)) = 0 unless Q �W . But if Q �W then t annotbe in Q. So Pftg�Q�V LQ(DP (n;I)) = 0.Now PT�Q�V LQ(P ) = 0 determines a supporting hyperplane of thelosed one of L-vetors of Eulerian posets, beause the inequality of Propo-sition 3.1 is valid, and the poset DP (n;I) lies on the hyperplane. Thehyperplane equations eah involve a distint maximal set V , whih is even,so they are linearly independent on the subspae determined by the equa-tions LS = 0 for S not an even set. So the doubled limit poset DP (n;I) ison an extreme ray of the one. 317



Note how far we are, however, from a omplete desription of the extremerays.Conjeture 4.3 For every positive integer n, the losed one of ag f -vetors of Eulerian posets of rank n+ 1 is �nitely generated.Lemma 4.4 (Faet Lemma) Assume PQ�[1;n℄ aQLQ(P ) � 0 for all Eu-lerian posets P of rank n + 1. Let M � [1; n℄ be a �xed even set. Sup-pose for all even sets R � [1; n℄, R 6= M , there exists an interval systemI(R) onsisting of disjoint even intervals whose union is R and suh thatPQ�[1;n℄ aQ`Q(P (n;I(R))) = 0. Then PQ�[1;n℄ aQLQ(P ) = 0 determines afaet of the losed one of L-vetors of Eulerian posets.(Note that I(R) need not be I[R℄.)Proof: The dimension of the one Cn+1E equals the number of even subsets (aFibonai number). So it suÆes to show that the vetors (`Q(P (n;I(R))))= (LQ(DP (n;I(R)))) are linearly independent. To see this, note that forevery set Q not ontained in R, `Q(P (n;I(R))) = 0. By the disjointnessof the intervals in I(R), there is a unique way to write R as the union ofintervals in I(R). So by Proposition 2.8, (`R(P (n;I(R)))) = (�1)jI(R)j.Thus, R is the unique maximal set Q for whih (`Q(P (n;I(R)))) 6= 0. Sothe L-vetors of the posets DP (n;I(R)), as R ranges over sets di�erent fromM , are linearly independent. 3Proposition 4.5 The inequality PQ�[1;n℄LQ(P ) � 0 (or, equivalently,f;(P ) � 0) determines a faet of the losed one of L-vetors of Eulerianposets of rank n+ 1.Proof: Apply the Faet Lemma 4.4 with M = ;. For a nonempty even setR, the interval system I[R℄ of R is nonempty, so PQ�[1;n℄ `Q(P (n;I[R℄)) =PJ�I[R℄(�1)jJ j = 0. 3Theorem 4.6 Let V be a subset of [1; n℄ suh that every I 2 I[V ℄ hasardinality at least 2, and every I 2 I[[0; n+ 1℄ n V ℄ has ardinality at most3. Assume that M is a subset of V suh that every [a; b℄ 2 I[V ℄ satis�es thefollowing:(i) M \ [a; b℄ = ;; [a; a+ 1℄, or [b� 1; b℄.(ii) If a 62M then a� 2 2 f�1g [M .18



(iii) If b 62M then b+ 2 2 fn+ 2g [M .Then (�1)jM j=2 XM�Q�V LQ(P ) � 0 (8)determines a faet of Cn+1E . Furthermore, if we strengthen (i) by also requir-ing M \ [a; a+ 2℄ = ; for every [a; a+ 2℄ 2 I[V ℄, then distint pairs (M;V )give distint faets.Proof: If M = ;, then onditions (ii) and (iii) fore V = [1; n℄ (or V = ;if n � 1). The resulting inequality, PQ�[1;n℄LQ(P ) � 0, gives a faet, asshown in Proposition 4.5. Now assume that M 6= ;.Step 1 is to prove that inequality (8) holds for all Eulerian posets. Notethat I[M ℄ is a nonempty olletion of intervals of length two. From eahsuh interval hoose one endpoint adjaent to an element of [0; n+ 1℄ n V .Let T be the set of these hosen elements. The Inequality Lemma 3.1 ap-plies to these T and V beause eah interval of V ontains at most oneinterval of I[M ℄, and hene at most one element of T . The resulting in-equality is (�1)jT jPT�Q�V LQ � 0. Now LQ(P ) = 0 for all P if I[Q℄ontains an odd interval. So we an restrit the sum to even sets Q. SineQ must be ontained in V , suh a Q must ontain the intervals of M . Thus,(�1)jM j=2PM�Q�V LQ(P ) � 0.Step 2 is to prove that if I � [1; n℄ is an interval of ardinality at least 2and I ontains an element i not in V , then I ontains an element adjaentto an interval of M . If an interval from I[V ℄ ends at i � 1, then eitheri�1 2M or i+1 2M by (iii) (sine i+1 < n+2). Similarly, if an intervalfrom I[V ℄ begins at i + 1, then either i � 1 2 M or i + 1 2 M . So assumeno interval from I[V ℄ begins at i � 1 or ends at i + 1. The hypothesis ofthe theorem states that every interval from I[[0; n+ 1℄ n V ℄ has ardinalityat most three. Thus the interval [i � 1; i + 1℄ belongs to I[[0; n + 1℄ n V ℄.Hene i � 2 2 f�1g [ V and i + 2 2 fn + 2g [ V . If i � 2 = �1 thenI � [i; i + 1℄ = [1; 2℄, ondition (ii) applied to a = 3 yields 3 2 M , and2 2 I is adjaent to 3. The ase when i+ 2 = n+ 2 is dealt with similarly.Finally, if i � 2 and i + 2 are both endpoints of intervals from I[V ℄, then,sine i 62M [ f�1; n+ 2g, ondition (ii) applied to a = i+ 2 and ondition(iii) applied to b = i � 2 yield i + 2 2 M and i � 2 2 M . Either i � 1 ori+ 1 belongs to I and eah of them is adjaent to an element of M .Reall that for I an even interval system, the vetor (`Q(P (n;I)) :Q � [1; n℄) is in the losed one of `-vetors of half-Eulerian posets. Step19



3 is to show that for eah even set R 6= M , there exists an even intervalsystem I with [i2II = R suh that (�1)jM j=2PM�Q�V `Q(P (n;I)) = 0.Let R be an even set not equal to M . If M 6� R, then for every Qontaining M , `Q(P (n;I[R℄)) = 0. Now suppose M � R, but R 6� V . LetI be an interval of I[R℄ suh that I 6� V . Then I ontains an elementadjaent to an interval of M . Sine M � R and I is a maximal interval inR, I \M 6= ;. Thus every union of intervals of I[R℄ ontaining M mustontain I and thus an element not in V . So PM�Q�V `Q(P (n;I[R℄)) = 0,beause all terms are zero.Finally, suppose M � R � V and R 6=M . Let I be the interval systemof R onsisting only of intervals of length 2. Then every interval of M is inI. This is beause every interval of M is of length 2, with at least one ofits endpoints adjaent to an element not in V . So PM�Q�V `Q(P (n;I)) =PI[M ℄�J�I(�1)jJ j = 0, sine R 6=M implies I 6= I[M ℄.By the Faet Lemma 4.4, the inequality (�1)jM j=2PM�Q�V LQ(P ) � 0gives a faet of Cn+1E .Now we show that under the added onditionM \ [a; a+2℄ = ; for every[a; a+ 2℄ 2 I[V ℄, the faets obtained are distint.Note that two (M;V ) pairs an give the same inequality only if they havethe same M , beause LM is inluded in the linear form for (M;V ), and Mis the minimal (by set inlusion) set for whih LM is in the form. Now for�xed M , we show that (M;V1) and (M;V2) give distint linear inequalitieswhen V1 6= V2. Sine the sets V1 and V2 are di�erent, there is an interval[a; b℄ suh that [a; b℄ ours in exatly one of I[V1℄ or I[V2℄. Let [a; b℄ bea maximal interval with this property. Without loss of generality assume[a; b℄ 2 I[V1℄. Then [a; b℄ is ontained in no interval of I[V2℄.Case 1. M \ [a; b℄ = ;. Then for every i, a � i � b � 1, the termL[i;i+1℄[M ours in the inequality for (M;V1). At least one of these termsdoes not our in the inequality for (M;V2), beause [a; b℄ 6� V2.Case 2. M \ [a; b℄ = [a; a+ 1℄. Sine M � V2 and [a; b℄ 6� V2, b > a+ 1.By the strengthened hypothesis on M , b � a+ 3. Then for every i, a+ 2 �i � b� 1, the term L[i;i+1℄[M ours in the inequality for (M;V1). At leastone of these terms does not our in the inequality for (M;V2), beause[a; b℄ 6� V2.Case 3. M \ [a; b℄ = [b� 1; b℄. The proof is similar to Case 2.Thus, with the ondition M \ [a; a + 2℄ = ; for every [a; a + 2℄ 2 I[V ℄,the faets given by the theorem are all distint. 3Theorem 4.6 may be restated and interpreted in terms of the onvolution20



of hain operators. We refer the interested reader to Appendix B for thatapproah.With the aid of PORTA ([14℄), we alulated the Eulerian one for rankat most 7. Our input �les, the output generated by PORTA, and a LATEX�le identifying the valid inequalities obtained may be found at [5℄. It turnsout that Theorems 4.2 and 4.6 give all the extremes and faets of the onefor rank at most 6. This fails at rank 7; there the faet inequalities allome from Proposition 3.1 and Theorem 3.2, but new poset onstrutionsare needed for the extreme rays.Theorem 4.7 For rank n + 1 � 6, the losed one Cn+1E of ag vetors ofEulerian posets is �nitely generated. It has � nbn=2� extreme rays, all gen-erated by the ag vetors of the limit posets DP (n;I) for I even intervalsystems on [1; n℄. It has � nbn=2� faets, all given by Proposition 4.5 andTheorem 4.6.Theorem 4.8 (i) The one C7E is �nitely generated, with 24 extreme rays.Twenty of the extreme rays are generated by the ag vetors of the limitposets DP (n;I) for I even interval systems on [1; 6℄.(ii) The one C7E has 23 faets. Fifteen of the faets are given by theinequalities of Theorem 4.6. Four additional faets ome from the InequalityLemma 3.1. The remaining four ome from Theorem 3.2.The four speial extreme rays of the rank 7 Eulerian one have orre-sponding rays in the half-Eulerian one. The generators for the half-Eulerianone are all obtained by adding the ag vetors of limit posets assoiatedwith noneven interval systems. The summands do not satisfy the onditionsof Proposition 2.3 for half-Eulerian posets, but the sum does. The alula-tions are easily done in terms of the `-vetor, using Proposition 2.8. Spei�sequenes of half-Eulerian posets have been onstruted whose ag vetorsonverge to these four extremes. The half-Eulerian posets are obtained by\gluing together" posets for eah summand. These are then onverted toEulerian posets by the horizontal doubling operation. Below are the sumsof limit posets used. Desriptions of the half-Eulerian posets are found inAppendix A.Extreme 1: P (6; f[1; 2℄; [2; 6℄g + f[2; 5℄; [5; 6℄g)Extreme 2: P (6; f[1; 3℄; [3; 4℄; [4; 6℄g + f[1; 2℄; [2; 3℄g + f[4; 5℄; [5; 6℄g)Extreme 3: P (6; f[1; 2℄; [3; 4℄; [4; 5℄g + f[3; 5℄; [5; 6℄g + f[1; 2℄; [2; 5℄g)Extreme 4: P (6; f[1; 2℄; [2; 4℄g + f[2; 5℄; [5; 6℄g + f[2; 3℄; [3; 4℄; [5; 6℄g)21



Note that for rank at most 7, the two ones Cn+1D and Cn+1E are equal,beause the generators of extreme rays spei�ed in Theorems 4.7 and 4.8are horizontal doubles of half-Eulerian limit posets.Perhaps all the extreme rays of the half-Eulerian one (if not the Eulerianone) an be obtained by gluing together Billera-Hetyei limit posets.A omplete desription of the losed one of ag vetors of Eulerianposets remains open, and, as mentioned before, the one is not even knownto be �nitely generated. We do not know if onvolutions of the inequalitiesof Proposition 3.1 and Theorem 3.2 ompletely determine the one. A betterunderstanding of the onstrution of extreme rays as sums of Billera-Hetyeilimit posets would be valuable.The study of Eulerian posets is motivated in part by questions aboutonvex polytopes. Is the one of ag vetors of all Eulerian posets the sameas or lose to the one of ag vetors of polytopes? The answer is no. The in-equalities of Proposition 3.1 an be strengthened onsiderably for polytopes.The proof of Proposition 3.1 uses only the fat that in an Eulerian poset eahinterval has at least two elements of eah rank. For onvex polytopes, eahinterval is at least the size of a Boolean algebra of the same rank. Thus, forexample, where Proposition 3.1 gives that f1479(P ) � 2f179(P ) � 0 for Eu-lerian posets, for onvex polytopes the inequality f1479(P ) � 20f179(P ) � 0holds, beause the rank 6 Boolean algebra has �63� = 20 elements of rank 3.For ranks 4 through 7, we have veri�ed that none of the extreme rays of theEulerian one is in the losed one of ag vetors of onvex polytopes.Appendix A Some half-Eulerian limit posets of rank 7Here are the onstrutions of half-Eulerian posets whose doubles give Ex-tremes 1, 2 and 3 of C7E . Extreme 4 is the dual of Extreme 3.In the following, C7 denotes a hain of rank 7.A.1 P (6; f[1; 2℄; [2; 6℄g+ f[2; 5℄; [5; 6℄g)Take DN[1;2℄DN[2;6℄ �C7� and DN[1;5℄DN[5;6℄ �C7�. Identify the elements of bothposets at rank 1 and at rank 6. Figure 1 represents the resulting poset forN = 2.
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Figure 1: P (6; f[1; 2℄; [2; 6℄g + f[2; 5℄; [5; 6℄g)A.2 P (6; f[1; 3℄; [3; 4℄; [4; 6℄g+ f[1; 2℄; [2; 3℄g+ f[4; 5℄; [5; 6℄g)Take P I(N) = DN[1;3℄DN[3;4℄DN[4;6℄DN+1[4;5℄ (C7)P II(N) = DN+1[1;2℄ DN[1;6℄DN[2;4℄(C7); andP III(N) = DN[1;5℄DN[3;5℄DN[5;6℄(C7):Identify the elements of P I(N) with the elements of P II(N) at ranks 1; 4; 5,and 6. Identify the elements of P I(N) with the elements of P III(N) atranks 1; 2; 3, and 6. Figure 2 represents the resulting poset for N = 2.23
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Figure 2: P (6; f[1; 3℄; [3; 4℄; [4; 6℄g + f[1; 2℄; [2; 3℄g + f[4; 5℄; [5; 6℄g)A.3 P (6; f[1; 2℄; [3; 4℄; [4; 5℄g+ f[3; 5℄; [5; 6℄g+ f[1; 2℄; [2; 5℄g)Take P I(N) = DN+1[1;2℄ DN+1[3;4℄ DN[3;6℄DN+1[4;5℄ (C7) (Figure 3)P II(N) = DN+1[1;5℄ DN2[3;5℄DN[5;6℄(C7) (Figure 4), andP III(N) = DN+2[1;2℄ DN2�N+2[2;5℄ DN[1;6℄(C7) (Figure 5).Identify the elements of P I(N) with the elements of P II(N) at ranks 1; 2,and 6. Identify the elements of P I(N) with the elements of P III(N) at rank6. Figure 6 represents the resulting poset for N = 2.
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Figure 3: P I(2)
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Figure 4: P II(2)
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Figure 6: P (6; f[1; 2℄; [3; 4℄; [4; 5℄g + f[3; 5℄; [5; 6℄g + f[1; 2℄; [2; 5℄g)
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Appendix B Convolution of inequalitiesAs in Billera and Liu ([10℄) we view the ag f -vetor as a vetor of hainoperators �fn+1S : S � [1; n℄�; here fn+1S (P ) = fS(P ) if P is a graded posetof rank n+1 and 0 otherwise. The following multipliation of hain operatorsfnS (n � 1, S � [1; n � 1℄) was introdued by Kalai in [15℄ and studied forEulerian posets by Billera and Liu in [10℄:fmS fnT = fm+nS[fmg[(T+m):It is straightforward that given a pair of valid linear inequalitiesF = XS�[1;m�1℄aSfmS � 0 and G = XT�[1;n�1℄ bSfnS � 0that hold for a hereditary lass of graded posets, the linear inequality FG � 0is also valid for the same lass. It was observed by Billera and Liu in [10,Proposition 1.3℄ that for the lass of all graded posets the onverse holds aswell: if FG � 0 is a valid inequality, then either both F � 0 and G � 0are valid inequalities, or both �F � 0 and �G � 0 are valid inequalities.It is easy to verify that the same equivalene is valid also for the lass of(half-)Eulerian posets.Proposition B.1 Consider F =PS�[1;m�1℄ aSfm and G =PT�[1;n�1℄ bSfnS .For these, FG � 0 holds for all half-Eulerian posets if and only if either bothF � 0 and G � 0 or both �F � 0 and �G � 0 hold for all half-Eulerianposets. The analogous statement is true for Eulerian posets.Only the \only if" impliation is not ompletely trivial. In the half-Eulerianase, all we need to observe is that for a pair (P;Q) of half-Eulerian posetsthe poset P Æ Q obtained by putting all elements of Q above all elementsof P , and identifying the top element of P with the bottom element of Q,is half-Eulerian. Moreover, if for posets P1; P2, and Q and forms F and G,F (P1) > 0, F (P2) < 0, and G(Q) > 0, then FG(P1 Æ Q) = F (P1)G(Q) > 0and FG(P2 ÆQ) = F (P2)G(Q) < 0. The same argument works for Eulerianposets using D2f�(P )g(P ÆQ) instead of P ÆQ.B.1 Unique fatorizationAording to [10, Theorem 2.1℄ the assoiative algebra generated by allhain operators (whose domain is taken to be the lass of all graded posets)is the free polynomial ring in variables ff i; : i � 1g. If we take the29



degree of the variable f i; to be i, then linear ombinations of the formF = PS�[1;m�1℄ aSfmS beome homogeneous polynomials. Hene, as notedby Billera and Hetyei in [8℄, one an use a result of Cohn in [13, Theorem 3℄that the semigroup of homogeneous polynomials of a free graded assoiativealgebra has unique fatorization. The validity of an inequality may thus beheked fator-by-fator.For Eulerian and half-Eulerian posets, it is advisable to onvert ourexpressions into the ag-` or ag-L forms, respetively. Straightforwardsubstitution into the de�nition shows`mS `nT = `m+nS[(T+m) and LmS LnT = 2Lm+nS[(T+m)This means that when we write [uS ℄ = LnS as the oeÆient of the e-worduS , the onvolution of the forms PS�[1;m�1℄ aS [uS ℄ and PT�[1;n�1℄ bT [uT ℄ isthe form 2PS�[1;m�1℄PT�[1;n�1℄ aSbT [uSuT ℄:Consider the free assoiative algebra Rh; ei generated by the letters and e. Given a homogeneous form F =PS�[1;n℄ aSLn+1S , set�(F ) = 12 n+1XS�[1;n℄aSuS:Evidently the linear map � is a ring isomorphism between the ring of hainoperators (with the onvolution operation) and the left ideal Rh; ei ofRh; ei (with onatenation of letters as multipliation). In terms of thisisomorphism we may rephrase [10, Proposition 3.2℄ as follows:Proposition B.2 Let IE be the two-sided ideal of all forms Pn+1S�[1;n℄ aSLn+1Svanishing on all Eulerian posets. Then �(IE ) is the ideal of Rh; ei gener-ated by f[e2k+1℄ : k � 0g.This statement is a diret onsequene of Corollary 1.3. The quotient ofRh; ei by the ideal �(IE) is the left ideal Rh; eei of the free nonommu-tative algebra Rh; eei. By Cohn's result ([13, Theorem 3℄) the ring Rh; eeihas unique homogeneous fatorization. Given an arbitrary homogeneousexpression E 2 Rh; eei, the homogeneous fators  are uniquely identi-�able in its unique homogeneous fatorization. Hene E may be uniquelywritten as a produt of homogeneous polynomials from Rh; eei that areirreduible in Rh; eei. The analogous observations may be also made inthe half-Eulerian setting, and we have the following unique fatorization.Proposition B.3 Every homogeneous linear form PS�[1;n℄ aS`n+1S orPS�[1;n℄ aSLn+1S , where S ranges over only even sets, an be uniquely writtenas a produt of irreduible expressions of the same kind.30



B.2 Convolution of faet inequalitiesBillera and Hetyei also showed in [8℄ that for the lass of all graded posetsthe produt of two faet inequalities is almost always a faet inequality,every exeption being a onsequene of the equalitiesfm; fn; = fm+nm = �fm+nm � fm+n; �+ fm+n; :In terms of onvolutions, Proposition 3.1 states that the produt of validinequalities of the form fn; � 0 and fni � 2fn; � 0 is a valid inequality forall Eulerian posets. Theorem 4.6 desribes a sublass of these produts thatyield faet inequalities. Using ideas extrated from the proof, one an showthe following, somewhat strengthened statements.Proposition B.4 If F � 0 de�nes a faet of Cn+1E , then F (fk+11 �2fk+1; ) �0 de�nes a faet of Cn+k+2E .Proposition B.5 If F � 0 de�nes a faet of Cn+1E , and F an be writtenas F = XS�[1;n℄aSLn+1Swhere S ranges over only even sets that ontain n, then Ffk+1; � 0 andFf1; f1; � 0 de�ne faets of Cn+k+2E and Cn+3E , respetively.It seems to be diÆult, however, even in the ase of these simple fa-tors, to predit whih produts yield faet inequalities. For example (f51 �2f5; )f1; = (f61 � 2f6; ) + 12 (f31 � 2f3; )(f31 � 2f3; ) � 0 does not de�ne a faet ofC6E , while it an be shown that (f51 � 2f5; )f3; � 0 de�nes a faet of C8E .Referenes[1℄ E. K. Babson, L. J. Billera, and C. S. Chan, Neighborly ubial spheresand a ubial lower bound onjeture, Israel J. Math. 102 (1997), 297{316.[2℄ M. M. Bayer, The extended f -vetors of 4-polytopes, J. Combin. The-ory Ser. A 44 (1987), 141{151.[3℄ M. M. Bayer, Signs in the d-index of Eulerian partially ordered sets,to appear in Pro. Amer. Math. So..31
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