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arti
le nous �etudions les ve
teurs f drapeau des ensembles partielle-ment ordonn�es gradu�es r-�epais. Nous d�emontrons que le 
ône le pluspetit 
ontenant 
es ve
teurs est isomorphe au 
ône des ve
teurs fdrapeau des ensembles partiellement ordonn�es gradu�es quel
onques.Nous d�e�nissons aussi un k-analogue de la fon
tion de M�obius etdes ensembles partiellement ordonn�es k-Eul�eriens qui sont 2k-�epais.Nous 
ara
t�erisons les ensembles partiellement ordonn�es Eul�eriens deplusieurs mani�eres, et montrons la g�en�eralisation des �equations deDehn-Sommerville pour le ve
teur f drapeau d'un ensemble partielle-ment ordonn�e k-Eul�erien. Nous montrons une nouvelle inegalit�e opti-male pour les ensembles partiellement ordonn�es Eul�eriens de rang 8.1 Introdu
tionIn this paper we study 
ertain 
lasses of graded partially ordered sets (posets),de�ned by 
onditions on the sizes of rank sets in intervals. We are 
on
ernedwith numeri
al parameters of the posets, in parti
ular, 
ag ve
tors and theM�obius fun
tion.A graded poset P is a �nite partially ordered set with a unique minimumelement 0̂, a unique maximum element 1̂, and a rank fun
tion � : P �! Nsatisfying �(0̂) = 0, and �(y) � �(x) = 1 whenever y 2 P 
overs x 2 P .The rank �(P ) of a graded poset P is the rank of its maximum element.Given a graded poset P of rank n+1 and a subset S of f1; 2; : : : ; ng (whi
hwe abbreviate as [1; n℄), de�ne the S{rank{sele
ted subposet of P to be theposet PS = fx 2 P : �(x) 2 Sg [ f0̂; 1̂g:Denote by fS(P ) the number of maximal 
hains of PS . Equivalently, fS(P ) isthe number of 
hains x1 < � � � < xjSj in P su
h that f�(x1); : : : ; �(xjSj)g = S.(Call su
h a 
hain an S-
hain of P .) The ve
tor (fS(P ) : S � [1; n℄) is
alled the 
ag f -ve
tor of P . Whenever it does not 
ause 
onfusion, wewrite fs1 ::: sj rather than ffs1;:::;sjg; in parti
ular, ffig is always denoted fi.In the last twenty years there has grown a body of work on numeri
al
onditions on 
ag ve
tors of posets and 
omplexes, espe
ially those arisingin geometri
 
ontexts. A major re
ent 
ontribution is the determination ofthe 
losed 
one of 
ag ve
tors of all graded posets by Billera and Hetyei([5℄). In [3℄ the authors study the 
losed 
one of 
ag ve
tors of Eulerianposets. These are graded posets for whi
h every (
losed) interval has thesame number of elements of even rank and of odd rank.A poset is r-thi
k if every nonempty open interval has at least r elements.Thus, every poset is 1-thi
k, and Eulerian posets are 2-thi
k. In the �rst2



part of this paper we show that the 
losed 
one of 
ag ve
tors of r-thi
kposets is linearly equivalent to the Billera-Hetyei 
one, the 
losed 
one of
ag ve
tors of all graded posets.The se
ond part of the paper de�nes a k-analogue of the M�obius fun
-tion and k-Eulerian posets (whi
h are 2k-thi
k). We show that the general-ized Dehn-Sommerville equations of [1℄ transfer to k-Eulerian posets. Theseequations have a parti
ularly ni
e representation in terms of the Lk-ve
tor,introdu
ed here as a relative of the 
d-index. The results of this paper 
an beused to �nd inequalities valid for 
ag ve
tors of Eulerian posets. In the lastse
tion we give as an example a new, sharp inequality for rank 8 Eulerianposets.Part Ir-thi
k posets2 Flag ve
tors of arbitrary graded posetsWe des
ribe �rst the 
one of 
ag ve
tors of all graded posets. This is dueto Billera and Hetyei ([5℄).An interval system on [1; n℄ is any set of subintervals of [1; n℄ that forman anti
hain (that is, no interval is 
ontained in another). A set S � [1; n℄blo
ks the interval system I if it has a nonempty interse
tion with everyI 2 I. The family of all subsets of [1; n℄ blo
king I is denoted by B[1;n℄(I).The main result of [5℄ is the following.Theorem 2.1 An expressionPS�[1;n℄ aSfS(P ) is nonnegative for all gradedposets P of rank n+ 1 if and only ifXS2B[1;n℄(I) aS � 0 for every interval system I on [1; n℄. (1)Here is an outline of the proof from [5℄. The proof of the ne
essity of the 
on-dition (1) involves 
onstru
ting for every interval system I on f1; 2; : : : ; nga family of posets fP (n;I; N) : N 2 Ng of rank n+ 1 su
h thatlimN�!1 1f[1;n℄(P (n;I; N)) XS�[1;n℄aSfS(P (n;I; N))) = XS2B[1;n℄(I) aS :For the other impli
ation, let P be an arbitrary graded poset, and assumethat its Hasse-diagram is drawn in the plane. Given an interval [x; y℄ of P , let3



�(x; y) denote the leftmost atom in [x; y℄. (If y 
overs x then set �(x; y) = y.)The operation � has the following 
ru
ial property:if p 2 [x; y℄ � [x; z℄ and p = �([x; z℄) then p = �([x; y℄). (2)For every S � [1; n℄ and i 2 [1; n℄ de�neMS(i) to be the smallest j 2 [i; n+1℄su
h that j 2 S [ fn+ 1g Consider the set of maximal 
hainsFS = n0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂ : 8i 2 [1; n℄; pi = �([pi�1; pMS(i)℄)o :It is easy to verify that FS 
ontains exa
tly fS(P ) elements. Moreover,there is a way of asso
iating a family of intervals IC to every maximal 
hainC = f0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂g su
h that C belongs to FS if andonly if S blo
ks IC . The fa
t that one may �nd su
h a family of intervals isa dire
t 
onsequen
e of property (2).3 Flag ve
tors of r-thi
k posetsIt is easy to expand any graded poset to obtain an r-thi
k poset. Let P bea graded poset of rank n+ 1. Write DrP for the poset obtained from P byrepla
ing every x 2 P n f0̂; 1̂g with r elements x1, x2, . . . xr, su
h that 0̂ and1̂ remain the minimum and maximum elements of the partially ordered set,and xi < yj if and only if x < y in P . The poset DrP is an r-thi
k gradedposet of rank n+ 1. Clearly fS(DrP ) = rjSjfS(P ).Theorem 3.1 For every positive integer r, PS�[1;n℄ aSfS(P ) � 0 for everygraded poset P of rank n+ 1 if and only if PS�[1;n℄ aSrn�jSjfS(Q) � 0 forevery r-thi
k poset Q of rank n+ 1.Proof: First assume PS�[1;n℄ aSrn�jSjfS(Q) � 0 for every r-thi
k poset Qof rank n+1. Let P be any graded poset of rank n+1. Sin
e DrP is r-thi
k,0 � XS�[1;n℄aSrn�jSjfS(DrP )= XS�[1;n℄aSrn�jSjrjSjfS(P )= XS�[1;n℄aSrnfS(P ):Dividing by rn gives the desired inequality for all graded posets.4



Now assume PS�[1;n℄ aSfS(P ) � 0 for every graded poset P of rankn+ 1. Let Q be an r-thi
k poset of rank n+ 1. For ea
h rank i, �x a totalorder of the elements of Q of rank i. Given an interval [x; y℄ of Q of rank atleast 2, let �(x; y) denote the set of the �rst r atoms in [x; y℄. (If y 
oversx, set �(x; y) = fyg.)The operation � satis�es the following:if p 2 [x; y℄ � [x; z℄ and p 2 �([x; z℄) then p 2 �([x; y℄). (3)LetFS = n0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂ : 8i 2 [1; n℄; pi 2 �([pi�1; pMS(i)℄)o :How many sequen
es are in the set FS? Given any S-
hain of Q, extend it tosequen
es in FS one rank at a time. Having �xed p0 through pi�1 (1 � i �n), if i 62 S, then there are exa
tly r 
hoi
es for pi. Thus jFS j = rn�jSjfS(Q).To ea
h maximal 
hain C: 0̂ = p0 < p1 < � � � < pn < pn+1 =1̂ of Q is assigned an interval system as follows. For 1 � i � n, let (C; i) be the largest j su
h that pi 2 �(pi�1; pj). Let I 0C = f[i;  (C; i)℄ :1 � i � n,  (C; i) 6= n+ 1g, and let IC be the interval system 
onsisting ofminimal intervals in I 0C . We show C belongs to FS if and only if S blo
ksIC . Suppose C: 0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂ is in FS . Then for alli, pi 2 �([pi�1; pMS(i)℄), so by the maximality of  (C; i),  (C; i) � MS(i).So for all i the interval [i;  (C; i)℄ 
ontains the element MS(i) of S. ThusS blo
ks IC . For the reverse impli
ation, suppose C is a maximal 
hain ofQ and S blo
ks IC . Let 1 � i � n and [i;  (C; i)℄ 2 IC . Sin
e S blo
ksIC , S \ [i;  (C; i)℄ 
ontains an element s. So MS(i) � s �  (C; i). Apply
ondition (3): pi 2 [pi�1; pMS(i)℄ � [pi�1; p (C;i)℄ and pi 2 �([pi�1; p (C;i)℄),so pi 2 �([pi�1; pMS(i) ℄). Thus C is in FS .Given a system of intervals I denote by fI the number of those maximal
hains C of Q for whi
h IC = I. (Note that fI depends not only on Q butalso on the ordering of the elements of ea
h rank.) ThenXS�[1;n℄aSrn�jSjfS(Q) = XS�[1;n℄aS jFS j = XS�[1;n℄aS XS2B[1;n℄(I) fI= XI fI XS2B[1;n℄(I) aS:By Theorem 2.1 the sums PS2B[1;n℄(I) aS are all nonnegative, and soXS�[1;n℄aSrn�jSjfS(Q) � 0: 25



Let Cr;n+1 be the smallest 
losed 
onvex 
one 
ontaining the 
ag ve
torsof all r-thi
k posets of rank n+ 1.Corollary 3.2 For all positive integers q and r, the invertible linear trans-formation �q;r : Q2n ! Q2n de�ned by �q;r((xS)) = ((r=q)jSjxS) mapsCq;n+1 onto Cr;n+1.To determine if a graded poset is r-thi
k, it is enough to 
he
k thatbetween every x and y with x < y and �(y) � �(x) = 2, there are at leastr elements. The de�nition of r-thi
k posets 
an then be generalized byallowing the lower bound r to vary through the levels of the poset. Theresults of this se
tion have straightforward analogues in that 
ontext.Part IIk-Eulerian posets4 The k-M�obius fun
tionDe�nition 1 The M�obius fun
tion of a graded poset P is de�ned re
ur-sively for any subinterval of P by the formula�([x; y℄) = ( 1 if x = y;�Px�z<y �([x; z℄) otherwise:A graded poset P is Eulerian if the M�obius fun
tion of every interval[x; y℄ is given by �([x; y℄) = (�1)�(x;y).(Here �(x; y) = �([x; y℄) = �(y)� �(x).)See [9℄ for a survey of Eulerian posets. The �rst 
hara
terization of alllinear equalities holding for the 
ag ve
tors of all Eulerian posets was givenby Bayer and Billera in [1℄.Theorem 4.1 (Bayer and Billera) For every Eulerian poset of rank n+ 1,every subset S � [1; n℄, and every maximal interval [i; `℄ of [1; n℄ n S,�(�1)i�1 + (�1)`+1� fS(P ) + X̀j=i(�1)jfS[fjg(P ) = 0:Furthermore, every linear equality holding for the 
ag ve
tor of all Eulerianposets of rank n+ 1 is a 
onsequen
e of these equations.6



Next we present generalizations of the M�obius fun
tion and of Eulerianposets.De�nition 2 The k-M�obius fun
tion of a graded poset is de�ned re
ursivelyby the formula�k([x; y℄) = ( 1 if x = y;�1� 1k Px<z<y �k([x; z℄) otherwise:The following proposition gives the k-M�obius fun
tion of a poset P asa k-analogue of the redu
ed Euler 
hara
teristi
 of the order 
omplex ofP . It is a generalization of Philip Hall's theorem, and is easy to prove byindu
tion.Proposition 4.2 If P is a graded poset of rank n+ 1, then�k(P ) = � XS�[1;n℄(�1k )jSjfn+1S (P ):A graded poset is k-Eulerian if for every interval [x; y℄ � P , �k([x; y℄) =(�1)�(x;y). Note that 1-Eulerian is the same as Eulerian. The followingproposition follows easily from the de�nitions.Proposition 4.3 If P is a k-Eulerian poset of rank n+ 1, then1. every interval of P is k-Eulerian2. nXi=1(�1)i�1fi(P ) = k(1 � (�1)n)The thi
kening operation introdu
ed in Se
tion 3 
onne
ts the k-M�obiusfun
tion for di�erent values of k.Proposition 4.4 Let [x; y℄ be an interval of a graded poset P and ` a posi-tive integer. Consider an interval [xi; yj℄ � D`P 
orresponding to [x; y℄ � P .Then �k([x; y℄) = �k`([xi; yj℄):Proof: Re
all that fS(D`P ) = `jSjfS(P ). Sin
e the interval [xi; yj ℄ of D`Pis isomorphi
 to D`[x; y℄, the result is obtained by substitution in Proposi-tion 4.2. 2Corollary 4.5 A poset P is k-Eulerian if and only if D`P is k`-Eulerian.7



In [3℄ a half-Eulerian poset was de�ned to be a poset P for whi
h D2P isEulerian.Using Proposition 4.4 we 
an determine exa
tly the set of those k's forwhi
h k-Eulerian posets exist.Theorem 4.6 For every positive integer n, there exists a k-Eulerian posetof rank n+ 1 if and only if k = j=2 for some positive integer j. Moreover,every k-Eulerian poset is 2k-thi
k.Proof: The 
hain C of rank n+1 is half-Eulerian. For every positive integerj, DjC is a j=2-Eulerian poset. On the other hand, by the de�nition of thefun
tion �k, for an interval [x; y℄ of rank 2 in a k-Eulerian poset,(�1)2 = �k([x; y℄) = �1� 1=k Xx<z<y �1=k([x; z℄) = �1� 1k Xx<z<y(�1):Therefore 2k is the number of elements z stri
tly between x and y. Thus, ifP is a k-Eulerian poset, then 2k is a positive integer, and P is 2k-thi
k. 2It is easy to 
he
k by indu
tion that a graded poset is half-Eulerianif and only if (1) in every interval [x; y℄ with �(x; y) odd, the number ofelements of even rank equals the number of elements of odd rank; and (2) inevery interval [x; y℄ with �(x; y) even, the number of elements z with �(x; z)even is one more than the number of elements z with �(x; z) odd. This
hara
terization 
an be used to 
he
k that the following \verti
al doubling"of an arbitrary graded poset produ
es a half-Eulerian poset. Let P be anygraded poset with relation �P . Form the set Q = f0̂; 1̂g [ fx1; x2 : x 2P n f0̂; 1̂gg. De�ne a relation �Q on Q by u �Q v if and only if one of thefollowing holds:� u = 0̂, v 2 P n f0̂g� v = 1̂, u 2 P n f1̂g� u = x1 and v = x2 for some x 2 P n f0̂; 1̂g� u = xi and v = yj for some x; y 2 P n f0̂; 1̂g, with x �P y.If P is a rank n+1 graded poset, then the resulting poset Q is a rank 2n+1half-Eulerian poset.For larger k, not all k-Eulerian posets are obtained by the thi
keningoperation. For an example, 
onsider the poset P of rank n+ 1 � 3 havingelements x1, x2, . . . , xm of rank 1, elements y1, y2, . . . , ym of rank 2, withxi < yj if and only if i = j, and one element of ea
h other rank. It is easyto 
he
k that P is half-Eulerian, and so D2kP is k-Eulerian. In the Hassediagram of D2kP , the subgraph indu
ed by the elements of ranks 1 and 28




onsists of m 
opies of the 
omplete bipartite graph K2k;2k. Repla
e thissubgraph by any other 2k-regular bipartite graph on these elements. Theresulting graph is the Hasse diagram of another k-Eulerian poset. (Notethat the only relations 
hanged in the poset are those between rank 1 andrank 2 elements.)The de�nition of k-Eulerian, like that of r-thi
k, 
an be generalized byvarying the multiplier k with the rank of the elements. The results of thisand the next se
tion 
an easily be adapted for su
h posets.5 The 
ag Lk-ve
torA 
ertain transformation of the 
ag f -ve
tor was useful in [8℄, [5℄, and [3℄.It has a natural adaptation to the k-Eulerian setting.De�nition 3 The 
ag Lk-ve
tor of a graded partially ordered set P of rankn+ 1 is the ve
tor (Lk;n+1S (P ) : S � [1; n℄), whereLk;n+1S (P ) = (�1)n�jSj XT�[1;n℄nS�� 12k�jT j fn+1T (P ):For k = 1=2 this is the `-ve
tor of [5℄; for k = 1 this is the \
e-index" of [8℄and the L-ve
tor of [3℄. The formula inverts to givefn+1S (P ) = (2k)jSj XT�[1;n℄nSLk;n+1T (P ): (4)The Lk-ve
tor ignores the e�e
t of the operator D`. If P is a graded posetof rank n+ 1, then Lk`;n+1S (D`P ) = Lk;n+1S (P ): (5)A set S � [1; n℄ is even if S is a disjoint union of intervals of even
ardinality. The parameters Lk;n+1S for even sets S play a spe
ial role fork-Eulerian posets. The k-analogue of Theorem 4.1 is the following.Theorem 5.1 For every k-Eulerian poset P of rank n + 1, every subsetS � [1; n℄, and every maximal interval [i; `℄ of [1; n℄ n S,k �(�1)i�1 + (�1)`+1� fS(P ) + X̀j=i(�1)jfS[fjg(P ) = 0:Every linear equality holding for the 
ag ve
tor of all k-Eulerian posets ofrank n+ 1 is a 
onsequen
e of these equations.In Lk-ve
tor form, these equations are equivalent to the set of equationsLk;n+1S (P ) = 0 for all subsets S � [1; n℄ that are not even.9



Call these equations the generalized Dehn-Sommerville equations, and de-note by DSk;n+1 the resulting subspa
e of R2n .Proof: The fa
t that the equations (in 
ag f -ve
tor form) hold for all k-Eulerian posets follows from Proposition 4.3. Fix a set S with gap [i; `℄. Forea
h S-
hain identify the rank i�1 element x and rank `+1 element y, andapply equation (2) to the interval [x; y℄. Sum the resulting equations for allthe S-
hains.Convert the 
ag f -ve
tor equations using equation (4). Writing V =[1; n℄ n S and dividing by 2jSjkjSj+1, the result is�(�1)i�1 + (�1)`+1� XT�V Lk;n+1T + 2X̀j=i(�1)j XT�V nfjgLk;n+1T = 0: (6)From this we prove by indu
tion that Lk;n+1V (P ) = 0 (abbreviated as LV = 0)for all noneven sets V . Let V � [1; n℄ be any noneven set, and let [i; `℄ bean odd maximal interval of V . Equation (6) givesXT�V LT + X̀j=i(�1)j�i+1 XT�V nfjgLT = 0: (7)If T is a noneven proper subset of V , then by the indu
tion assumption,LT = 0. So 
onsider an even subset T � V . Sin
e the maximal intervals ofT 
ontained in [i; `℄ are even, [i; `℄nT = fj1; j2; : : : ; jtg, where t is odd, j1� iis even, and, for 2 � p � t, jp�jp�1 is odd. Thus, for 1 � p � t, jp�i+1 hasthe same parity as p. The 
oeÆ
ient of LT in (7) is 1 +Ptp=1(�1)jp�i+1 =1 +Ptp=1(�1)p = 0. So equation (7) redu
es to LV = 0.Conversely, suppose LV = 0 for all noneven sets V � [1; n℄. We showthat the equations in (6) hold. Let V � [1; n℄ and [i; `℄ a maximal inter-val of V . For ` � i even, we need to prove equation (7). (The 
ase of` � i odd is similar, and is omitted.) It suÆ
es to 
onsider the terms LTwith T an even set. For su
h T , [i; `℄ n T = fj1; j2; : : : ; jtg as above, witht odd, and jp � i + 1 � p (mod 2). So the 
oeÆ
ient in (7) of LT is1 +Ptp=1(�1)jp�i+1 = 1 +Ptp=1(�1)p = 0. Thus equation (7) holds.To 
omplete the proof, it suÆ
es to show that the linear span of the Lk-ve
tors of k-Eulerian posets of rank n+1 is the subspa
e of R2n determinedby the equations Lk;n+1S (P ) = 0 for all subsets S � [1; n℄ that are not even.This 
an be a

omplished by �nding a set of linearly independent ve
torsin the span of the Lk-ve
tors of k-Eulerian posets, one ve
tor for ea
h evensubset S � [1; n℄. In [5℄ Billera and Hetyei 
onstru
ted, for ea
h interval10



system I, a sequen
e of graded posets P (n;I; N). The 
onstru
tion startswith a rank n+ 1 
hain, and repli
ates intervals of ranks in the poset. Foran even set S, let I[S℄ be the set of maximal intervals in S. (For example,for S = f1; 3; 4; 7; 8; 9; 10g, I[S℄ = f[1℄; [3; 4℄; [7; 10℄g.) If S is an even subsetof [1; n℄, then P (n;I[S℄; N) is half-Eulerian for all N . Furthermore, thesequen
e of L1=2-ve
tors of these posets satis�es the following. Here m isthe number of intervals in I[S℄.limN�!1 1NmL1=2;n+1T (P (n;I[S℄; N)) = ( (�1)j if T is the union of j intervals of S,0 otherwise:(See [3℄ for details.) Using (5), we get for any positive integer 2k,limN�!1 1NmLk;n+1T �D2kP (n;I[S℄; N)� = ( (�1)j if T is the union of j intervals of S,0 otherwise:For �xed k the limiting Lk-ve
tors for ea
h even interval system I[S℄ arelinearly independent, sin
e for ea
h even set S, the ve
tor formed from thesequen
e (P (n;I[S℄; N)) has T -entry 0 for all T not 
ontaining S. 2A 
ag ve
tor 
an by 
han
e lie in the subspa
e DSk;n+1 without theposet being k-Eulerian. However, k-Eulerian posets are 
hara
terized bythe equations holding lo
ally. The k = 1 
ase of this is in [3℄. The proofrequires the 
onvolution of 
ag operators, de�ned by Kalai [7℄ (see also[6℄). It is de�ned for the 
ag numbers by fmS � fnT = fm+nS[fmg[(T+m), and isextended by bilinearity to linear 
ombinations. For pm+1 and qn+1 linear
ombinations of 
hain operators in ranks m+1 and n+1, respe
tively, their
onvolution on a rank m+ n poset P satis�espm+1 � qn+1(P ) = Xx2P�(x)=m pm+1([0̂; x℄)qn+1([x; 1̂℄):Convolution behaves ni
ely on the 
ag Lk-ve
tor. For a rank m + n + 2poset P ,Lk;m+1S �Lk;n+1T (P ) = Xx2P�(x)=m+1 Lk;m+1S ([0̂; x℄)Lk;n+1T ([x; 1̂℄) = 2kLk;m+n+2S[(T+m+1)(P ):(8)Theorem 5.2 A graded partially ordered set P is k-Eulerian if and only iffor every interval [x; y℄ � P of positive even rank Lk;�(x;y)[1;�(x;y)�1℄([x; y℄) = 0.11



Proof: Sin
e every interval of a k-Eulerian partially ordered set is k-Eulerian, Theorem 5.1 gives that Lk;�(x;y)[1;�(x;y)�1℄([x; y℄) = 0 for all intervals[x; y℄ of positive even rank.Now assume that for every interval [x; y℄ of positive even rank,Lk;�(x;y)[1;�(x;y)�1℄([x; y℄) = 0. Then by equation (8), for every interval [x; y℄ � Pand for every S � [1; �(x; y) � 1℄ that is not even, Lk;�([x;y℄)S ([x; y℄) = 0.For P of rank n+ 1, by Proposition 4.2,�k(P ) = � XS�[1;n℄(�1k )jSjfn+1S (P ) = � XS�[1;n℄(�1k )jSj(2k)jSj XT�[1;n℄nSLk;n+1T (P )= � XT�[1;n℄Lk;n+1T (P ) XS�[1;n℄nT(�2)jSj = � XT�[1;n℄Ln+1T (P )(�1)n�jT j:Sin
e Lk;n+1T (P ) is nonzero only if T is an even set, and then jT j is an evennumber,�k(P ) = (�1)n+1 XT�[1;n℄Ln+1T (P ) = (�1)n+1fn+1; (P ) = (�1)n+1:The same argument 
an be repeated for every interval of P , showing that itis a k-Eulerian poset. 2Using this result, we get the following 
urious 
hara
terization via theM�obius fun
tion.Theorem 5.3 A graded poset P is k-Eulerian if and only if the 2k-M�obiusfun
tion of every interval [x; y℄ � P of even rank is zero.Proof: Let P be a graded poset. By Corollary 4.5 P is Eulerian if and onlyif D2P is 2k-Eulerian if and only if for every interval [xi; yj℄ of D2P with�(xi; yj) even L2k;�(xi;yj)[1;�(xi;yj)�1℄([xi; yj℄) = 0if and only if for every interval [xi; yj ℄ of D2P with �(xi; yj) evenXT�[1;�(xi;yj)�1℄(� 14k )jT jfT ([xi; yj ℄) = 0if and only if for every interval [x; y℄ of P with �(x; y) evenXT�[1;�(x;y)�1℄(� 14k )jT j2jT jfT ([x; y℄) = 012



if and only if for every interval [x; y℄ of P with �(x; y) evenXT�[1;�(x;y)�1℄(� 12k )jT jfT ([x; y℄) = 0if and only if for every interval [x; y℄ of P with �(x; y) even �2k([x; y℄) = 0.2 In parti
ular, a graded poset P is half-Eulerian if and only if the (usual)M�obius fun
tion of [x; y℄ is zero for every [x; y℄ � P of even rank.The L1-ve
tor of a graded poset is the ve
tor of 
oeÆ
ients of the 
e-index, introdu
ed in [8℄ as a variation of the 
d-index of an Eulerian poset.(The 
d-index of an Eulerian poset, due to Fine (see [4℄), is a ve
tor linearlyequivalent to the 
ag ve
tor; it embodies the generalized Dehn-Sommervilleequations of Theorem 4.1.) In [8℄, Stanley observed that the existen
e ofthe 
d-index for a graded poset is equivalent to the vanishing of the 
oeÆ-
ients of 
e-words 
ontaining an odd string of e's; in our notation this saysL1;n+1S (P ) = 0 for all subsets S � [1; n℄ that are not even. Thus the lastpart of Theorem 5.1 (as well as the �rst part) is already known for k = 1.The Lk-ve
tor for general k 
an be presented in the same way. For P anygraded poset of rank n+1, write a generating fun
tion for the 
ag f -ve
toras follows: �(a; b) = XS�[1;n℄ fSuS ;where uS = u1u2 : : : un with ui = a if i 62 S and ui = b if i 2 S. then�(e; 
� e2k ) = XT�[1;n℄LT vT ;where vT = v1v2 : : : vn with vi = 
 if i 62 T and vi = e if i 2 T . The equationsof Theorem 5.1 for k-Eulerian posets 
an then be rephrased as saying that�(e; (
� e)=(2k)) is a polynomial in (the non
ommuting expressions) 
 andee.6 The 
one of k-Eulerian 
ag ve
torsTheorem 3.1, along with the des
ription of the 
one of 
ag ve
tors of generalgraded posets ([5℄), 
an be used to generate all the inequalities valid for allr-thi
k posets. The inequalities for 2k-thi
k posets are, in parti
ular, validfor all k-Eulerian posets, but they may not be sharp. We would like to know13



the essential inequalities, that is, the 
losed 
ones of 
ag ve
tors of Eulerianand of half-Eulerian posets. In [3℄ these 
ones are studied and are 
ompletelydetermined up through rank 7. (See also [2℄ for data on the 
one.) In the
ontext of this paper, the results 
an be stated as follows.Theorem 6.1 ([3℄) For rank n+ 1 � 7,1. the 
losed 
one of 
ag ve
tors of half-Eulerian posets of rank n+ 1 isthe interse
tion of the 
one C1;n+1 of 
ag ve
tors of all graded posets ofrank n+1 with the subspa
e DS1=2;n+1 determined by the half-Eulerianequations of Theorem 5.1;2. the 
losed 
one of 
ag ve
tors of Eulerian posets of rank n + 1 isthe interse
tion of the 
one C2;n+1 of 
ag ve
tors of all 2-thi
k gradedposets of rank n + 1 with the generalized Dehn-Sommerville subspa
eDS1;n+1; and3. the two 
ones are isomorphi
.We do not know if this theorem extends to higher ranks. However, forall ranks, part 1 of the theorem implies parts 2 and 3.Theorem 6.2 Let CONEk;n+1 be the statement,The 
losed 
one of 
ag ve
tors of k-Eulerian posets of rank n+ 1is the interse
tion of the 
one C2k;n+1 of 
ag ve
tors of all 2k-thi
k graded posets of rank n + 1 with the generalized Dehn-Sommerville spa
e DSk;n+1.For all k � 1 (with 2k an integer) and all positive integers n,CONE1=2;n+1 =) CONEk;n+1:Proof: Re
all the map �1;2k of Corollary 3.2; it maps C1;n+1 onto C2k;n+1.Clearly it also mapsDS1=2;n+1 onto DSk;n+1. So �1;2k(C1;n+1\DS1=2;n+1) =C2k;n+1 \ DSk;n+1, whi
h 
ontains the 
one of k-Eulerian 
ag ve
tors. Onthe other hand, for any half-Eulerian poset P , �1;2k((fS(P ))) = (fS(D2kP )),the 
ag ve
tor of the k-Eulerian poset D2kP . If CONE1=2;n+1 holds, thenC1;n+1 \ DS1=2;n+1 is the 
one of half-Eulerian 
ag ve
tors, and its imageis 
ontained in the 
one of k-Eulerian 
ag ve
tors. Thus, if CONE1=2;n+1holds, then C2k;n+1 \ DSk;n+1 is exa
tly the 
losed 
one of 
ag ve
tors ofk-Eulerian posets. 214



Another question raised in [3℄ on the stru
ture of these 
ones 
an beanswered. For rank at most 7, all fa
et inequalities of the half-Eulerian(and with slight modi�
ation, Eulerian) 
one are generated from two basi
types of inequalities.Theorem 6.3 ([3℄) Let S and T be disjoint subsets of [1; n℄, su
h that everymaximal interval of the 
omplement of S 
ontains at most one element ofT . Then for every rank n+ 1 half-Eulerian poset P ,XR�T (�1)jTnRjfS[R(P ) � 0:Let 1 � i < j < ` � n. Then for every rank n+ 1 half-Eulerian poset P ,fi`(P )� fi(P )� f`(P ) + fj(P ) � 0:Other valid inequalities are obtained by the 
onvolution of inequalities ofthese types. The question arose whether these generate all inequalities validfor the 
ag ve
tors of all half-Eulerian posets. They do not.Proposition 6.4 For all half-Eulerian posets P of rank 8,f81356(P )�f8135(P )�f8356(P )+f815(P )�f816(P )+f835(P )+f836(P )�f83 (P ) � 0;or, in L1=2-ve
tor form,L1=2;845 (P ) + L1=2;82345 (P ) + L1=2;856 (P ) + L1=2;81256 (P )� L1=2;82367 (P )� L1=2;83467 (P ) + L1=2;84567 (P ) + L1=2;8124567(P ) � 0: (9)This inequality determines a fa
et of the 
losed 
one of 
ag ve
tors of half-Eulerian posets, and does not follow from the inequalities of Proposition 6.3.The proposition remains valid if \half-Eulerian" is repla
ed by k-Eulerian,and ea
h fS is repla
ed by (2k)n�jSjfS.Proof: We �rst show the inequality is not a 
onvolution of lower rankinequalities. In Lk-ve
tor form the 
onvolution satis�es the rule Lk;i+1T �Lk;j+1V = 2kLk;i+j+2T[(V+i+1) (see equation 8). So the 
onvolution of linear ex-pressions for ranks i+1 and j+1 with n = i+j+1 gives a linear 
ombinationof Lk;n+1S involving only subsets S � [1; n℄ not 
ontaining i+1. Sin
e ea
h el-ement of [1; 7℄ o

urs in some set S in the inequality 9, it is not a 
onvolutionof lower rank inequalities.We now show that the inequality determines a fa
et of the 
one. Billeraand Hetyei list the fa
et inequalities for the general graded 
one up through15



rank 5. The inequality of the proposition 
omes from applying one of therank 5 Billera-Hetyei inequalities to the rank-sele
ted subposet Pf1;3;5;6g ofan arbitrary half-Eulerian poset P . To 
he
k it is a fa
et of the half-Eulerian
one, we give twenty linearly independent limiting normalized L1=2-ve
torsof half-Eulerian posets, for whi
h the inequality holds with equality. The�rst sixteen posets are Billera-Hetyei limit posets determined by intervalsystems as in the following table.P1 ; P7 [1; 2℄[5; 6℄ P12 [1; 4℄[6; 7℄P2 [1; 2℄ P8 [1; 2℄[3; 4℄[5; 6℄ P13 [4; 5℄[6; 7℄P3 [2; 3℄ P9 [3; 6℄ P14 [2; 3℄[4; 5℄[6; 7℄P4 [3; 4℄ P10 [6; 7℄ P15 [1; 2℄[4; 7℄P5 [1; 2℄[3; 4℄ P11 [1; 2℄[6; 7℄ P16 [2; 7℄P6 [2; 3℄[4; 5℄The next three limit posets are obtained from the rank 7 Extremes 2,3 and 4 of [3, Theorem 4.8℄ by inserting a single new element of rank 1,shifting the old elements up one rank.To des
ribe the last sequen
e of posets, let us (re)introdu
e the followinggeneralization of the operator Dr. Given a graded poset P of rank n+ 1denote by Dr[u;v℄(P ) the poset obtained from P by repla
ing ea
h x 2 Psatisfying �(x) 2 [u; v℄ with r elements x1; x2; : : : ; xr (keep every y 2 P sat-isfying �(y) 62 [u; v℄ un
hanged), and by setting the following order relations.The ([1; n℄n [u; v℄)-rank-sele
ted subposet of P and of Dr[u;v℄(P ) are identi
al.For x; y 2 P satisfying �(x) 2 [u; v℄ and �(y) 62 [u; v℄ set xi < y or xi > yin Dr[u;v℄(P ) if and only of the same relation holds between x and y in P .Finally for x; y 2 P satisfying u � �(x) < �(y) � v set xi < yj in Dr[u;v℄(P )if and only if i = j and x < y in P .For example, Figure 1 shows D2[1;2℄(C4) where C4 is a 
hain of rank 4.Note that for a graded poset P of rank n + 1 the graded poset Dr(P ) isisomorphi
 to Dr[1;1℄Dr[2;2℄ : : : Dr[n;n℄(P ). The same notation is used in [3℄.Let N be an arbitrary positive integer, and C8 be a 
hain of rank 8.Consider now the following four graded posets.P I(N) = DN+1[1;2℄ DN+1[2;3℄ DN+1[4;5℄ DN[1;7℄(C8)P II(N) = DN2[1;3℄DN+1[1;5℄ DN[1;7℄(C8)P III(N) = DN2�N+2[1;4℄ DN+2[4;5℄ DN[6;7℄(C8)P IV (N) = DN+2[1;2℄ DN3�N2+2[2;7℄ (C8)16



vv v
vv vv0̂
1̂������������Figure 1: D2[1;2℄(C4)The f4; 5; 6; 7g-rank-sele
ted subposets of P I(N) and P II(N) are both iso-morphi
 to DN+1[1;2℄ DN[1;4℄(C5), where C5 is a 
hain of rank 5; the f6; 7g-rank-sele
ted subposets of P I(N), P II(N), and P III(N) are all isomorphi
 toDN[1;2℄(C3) where C3 is a 
hain of rank 3. Let P (N) be the graded poset ofrank 8 obtained from P I(N), P II(N), P III(N), and P IV (N) by performingthe following identi�
ations:-identify the bottom element 0̂ of all four posets,-identify the top element 1̂ of all four posets,-identify P I(N)f4;5;6;7g with P II(N)f4;5;6;7g,-identify P I(N)f6;7g with P III(N)f6;7g.Figure 2 indi
ates how the four posets are identi�ed, in a s
hemati
 way.Straightforward 
al
ulation shows that P (N) is a half-Eulerian poset, forea
h positiveN . Furthermore the normalized L1=2-ve
tors, (L1=2;8S (P (N))=N4),
onverge.The rows of the matrix below are the normalized L1=2-ve
tors of thetwenty limit posets. In the 
olumns are the values of L1=2;8S (divided by theappropriate power of N), with the sets S in the order ;, f1; 2g, f2; 3g, f3; 4g,f1; 2; 3; 4g, f4; 5g, f1; 2; 4; 5g, f2; 3; 4; 5g, f5; 6g, f1; 2; 5; 6g, f2; 3; 5; 6g, f3; 4; 5; 6g,f1; 2; 3; 4; 5; 6g, f6; 7g, f1; 2; 6; 7g, f2; 3; 6; 7g, f3; 4; 6; 7g, f1; 2; 3; 4; 6; 7g, f4; 5; 6; 7g,f1; 2; 4; 5; 6; 7g, f2; 3; 4; 5; 6; 7g. It is easy to 
he
k the rows are linearly in-dependent.
17
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