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artile nous �etudions les veteurs f drapeau des ensembles partielle-ment ordonn�es gradu�es r-�epais. Nous d�emontrons que le ône le pluspetit ontenant es veteurs est isomorphe au ône des veteurs fdrapeau des ensembles partiellement ordonn�es gradu�es quelonques.Nous d�e�nissons aussi un k-analogue de la fontion de M�obius etdes ensembles partiellement ordonn�es k-Eul�eriens qui sont 2k-�epais.Nous arat�erisons les ensembles partiellement ordonn�es Eul�eriens deplusieurs mani�eres, et montrons la g�en�eralisation des �equations deDehn-Sommerville pour le veteur f drapeau d'un ensemble partielle-ment ordonn�e k-Eul�erien. Nous montrons une nouvelle inegalit�e opti-male pour les ensembles partiellement ordonn�es Eul�eriens de rang 8.1 IntrodutionIn this paper we study ertain lasses of graded partially ordered sets (posets),de�ned by onditions on the sizes of rank sets in intervals. We are onernedwith numerial parameters of the posets, in partiular, ag vetors and theM�obius funtion.A graded poset P is a �nite partially ordered set with a unique minimumelement 0̂, a unique maximum element 1̂, and a rank funtion � : P �! Nsatisfying �(0̂) = 0, and �(y) � �(x) = 1 whenever y 2 P overs x 2 P .The rank �(P ) of a graded poset P is the rank of its maximum element.Given a graded poset P of rank n+1 and a subset S of f1; 2; : : : ; ng (whihwe abbreviate as [1; n℄), de�ne the S{rank{seleted subposet of P to be theposet PS = fx 2 P : �(x) 2 Sg [ f0̂; 1̂g:Denote by fS(P ) the number of maximal hains of PS . Equivalently, fS(P ) isthe number of hains x1 < � � � < xjSj in P suh that f�(x1); : : : ; �(xjSj)g = S.(Call suh a hain an S-hain of P .) The vetor (fS(P ) : S � [1; n℄) isalled the ag f -vetor of P . Whenever it does not ause onfusion, wewrite fs1 ::: sj rather than ffs1;:::;sjg; in partiular, ffig is always denoted fi.In the last twenty years there has grown a body of work on numerialonditions on ag vetors of posets and omplexes, espeially those arisingin geometri ontexts. A major reent ontribution is the determination ofthe losed one of ag vetors of all graded posets by Billera and Hetyei([5℄). In [3℄ the authors study the losed one of ag vetors of Eulerianposets. These are graded posets for whih every (losed) interval has thesame number of elements of even rank and of odd rank.A poset is r-thik if every nonempty open interval has at least r elements.Thus, every poset is 1-thik, and Eulerian posets are 2-thik. In the �rst2



part of this paper we show that the losed one of ag vetors of r-thikposets is linearly equivalent to the Billera-Hetyei one, the losed one ofag vetors of all graded posets.The seond part of the paper de�nes a k-analogue of the M�obius fun-tion and k-Eulerian posets (whih are 2k-thik). We show that the general-ized Dehn-Sommerville equations of [1℄ transfer to k-Eulerian posets. Theseequations have a partiularly nie representation in terms of the Lk-vetor,introdued here as a relative of the d-index. The results of this paper an beused to �nd inequalities valid for ag vetors of Eulerian posets. In the lastsetion we give as an example a new, sharp inequality for rank 8 Eulerianposets.Part Ir-thik posets2 Flag vetors of arbitrary graded posetsWe desribe �rst the one of ag vetors of all graded posets. This is dueto Billera and Hetyei ([5℄).An interval system on [1; n℄ is any set of subintervals of [1; n℄ that forman antihain (that is, no interval is ontained in another). A set S � [1; n℄bloks the interval system I if it has a nonempty intersetion with everyI 2 I. The family of all subsets of [1; n℄ bloking I is denoted by B[1;n℄(I).The main result of [5℄ is the following.Theorem 2.1 An expressionPS�[1;n℄ aSfS(P ) is nonnegative for all gradedposets P of rank n+ 1 if and only ifXS2B[1;n℄(I) aS � 0 for every interval system I on [1; n℄. (1)Here is an outline of the proof from [5℄. The proof of the neessity of the on-dition (1) involves onstruting for every interval system I on f1; 2; : : : ; nga family of posets fP (n;I; N) : N 2 Ng of rank n+ 1 suh thatlimN�!1 1f[1;n℄(P (n;I; N)) XS�[1;n℄aSfS(P (n;I; N))) = XS2B[1;n℄(I) aS :For the other impliation, let P be an arbitrary graded poset, and assumethat its Hasse-diagram is drawn in the plane. Given an interval [x; y℄ of P , let3



�(x; y) denote the leftmost atom in [x; y℄. (If y overs x then set �(x; y) = y.)The operation � has the following ruial property:if p 2 [x; y℄ � [x; z℄ and p = �([x; z℄) then p = �([x; y℄). (2)For every S � [1; n℄ and i 2 [1; n℄ de�neMS(i) to be the smallest j 2 [i; n+1℄suh that j 2 S [ fn+ 1g Consider the set of maximal hainsFS = n0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂ : 8i 2 [1; n℄; pi = �([pi�1; pMS(i)℄)o :It is easy to verify that FS ontains exatly fS(P ) elements. Moreover,there is a way of assoiating a family of intervals IC to every maximal hainC = f0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂g suh that C belongs to FS if andonly if S bloks IC . The fat that one may �nd suh a family of intervals isa diret onsequene of property (2).3 Flag vetors of r-thik posetsIt is easy to expand any graded poset to obtain an r-thik poset. Let P bea graded poset of rank n+ 1. Write DrP for the poset obtained from P byreplaing every x 2 P n f0̂; 1̂g with r elements x1, x2, . . . xr, suh that 0̂ and1̂ remain the minimum and maximum elements of the partially ordered set,and xi < yj if and only if x < y in P . The poset DrP is an r-thik gradedposet of rank n+ 1. Clearly fS(DrP ) = rjSjfS(P ).Theorem 3.1 For every positive integer r, PS�[1;n℄ aSfS(P ) � 0 for everygraded poset P of rank n+ 1 if and only if PS�[1;n℄ aSrn�jSjfS(Q) � 0 forevery r-thik poset Q of rank n+ 1.Proof: First assume PS�[1;n℄ aSrn�jSjfS(Q) � 0 for every r-thik poset Qof rank n+1. Let P be any graded poset of rank n+1. Sine DrP is r-thik,0 � XS�[1;n℄aSrn�jSjfS(DrP )= XS�[1;n℄aSrn�jSjrjSjfS(P )= XS�[1;n℄aSrnfS(P ):Dividing by rn gives the desired inequality for all graded posets.4



Now assume PS�[1;n℄ aSfS(P ) � 0 for every graded poset P of rankn+ 1. Let Q be an r-thik poset of rank n+ 1. For eah rank i, �x a totalorder of the elements of Q of rank i. Given an interval [x; y℄ of Q of rank atleast 2, let �(x; y) denote the set of the �rst r atoms in [x; y℄. (If y oversx, set �(x; y) = fyg.)The operation � satis�es the following:if p 2 [x; y℄ � [x; z℄ and p 2 �([x; z℄) then p 2 �([x; y℄). (3)LetFS = n0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂ : 8i 2 [1; n℄; pi 2 �([pi�1; pMS(i)℄)o :How many sequenes are in the set FS? Given any S-hain of Q, extend it tosequenes in FS one rank at a time. Having �xed p0 through pi�1 (1 � i �n), if i 62 S, then there are exatly r hoies for pi. Thus jFS j = rn�jSjfS(Q).To eah maximal hain C: 0̂ = p0 < p1 < � � � < pn < pn+1 =1̂ of Q is assigned an interval system as follows. For 1 � i � n, let (C; i) be the largest j suh that pi 2 �(pi�1; pj). Let I 0C = f[i;  (C; i)℄ :1 � i � n,  (C; i) 6= n+ 1g, and let IC be the interval system onsisting ofminimal intervals in I 0C . We show C belongs to FS if and only if S bloksIC . Suppose C: 0̂ = p0 < p1 < � � � < pn < pn+1 = 1̂ is in FS . Then for alli, pi 2 �([pi�1; pMS(i)℄), so by the maximality of  (C; i),  (C; i) � MS(i).So for all i the interval [i;  (C; i)℄ ontains the element MS(i) of S. ThusS bloks IC . For the reverse impliation, suppose C is a maximal hain ofQ and S bloks IC . Let 1 � i � n and [i;  (C; i)℄ 2 IC . Sine S bloksIC , S \ [i;  (C; i)℄ ontains an element s. So MS(i) � s �  (C; i). Applyondition (3): pi 2 [pi�1; pMS(i)℄ � [pi�1; p (C;i)℄ and pi 2 �([pi�1; p (C;i)℄),so pi 2 �([pi�1; pMS(i) ℄). Thus C is in FS .Given a system of intervals I denote by fI the number of those maximalhains C of Q for whih IC = I. (Note that fI depends not only on Q butalso on the ordering of the elements of eah rank.) ThenXS�[1;n℄aSrn�jSjfS(Q) = XS�[1;n℄aS jFS j = XS�[1;n℄aS XS2B[1;n℄(I) fI= XI fI XS2B[1;n℄(I) aS:By Theorem 2.1 the sums PS2B[1;n℄(I) aS are all nonnegative, and soXS�[1;n℄aSrn�jSjfS(Q) � 0: 25



Let Cr;n+1 be the smallest losed onvex one ontaining the ag vetorsof all r-thik posets of rank n+ 1.Corollary 3.2 For all positive integers q and r, the invertible linear trans-formation �q;r : Q2n ! Q2n de�ned by �q;r((xS)) = ((r=q)jSjxS) mapsCq;n+1 onto Cr;n+1.To determine if a graded poset is r-thik, it is enough to hek thatbetween every x and y with x < y and �(y) � �(x) = 2, there are at leastr elements. The de�nition of r-thik posets an then be generalized byallowing the lower bound r to vary through the levels of the poset. Theresults of this setion have straightforward analogues in that ontext.Part IIk-Eulerian posets4 The k-M�obius funtionDe�nition 1 The M�obius funtion of a graded poset P is de�ned reur-sively for any subinterval of P by the formula�([x; y℄) = ( 1 if x = y;�Px�z<y �([x; z℄) otherwise:A graded poset P is Eulerian if the M�obius funtion of every interval[x; y℄ is given by �([x; y℄) = (�1)�(x;y).(Here �(x; y) = �([x; y℄) = �(y)� �(x).)See [9℄ for a survey of Eulerian posets. The �rst haraterization of alllinear equalities holding for the ag vetors of all Eulerian posets was givenby Bayer and Billera in [1℄.Theorem 4.1 (Bayer and Billera) For every Eulerian poset of rank n+ 1,every subset S � [1; n℄, and every maximal interval [i; `℄ of [1; n℄ n S,�(�1)i�1 + (�1)`+1� fS(P ) + X̀j=i(�1)jfS[fjg(P ) = 0:Furthermore, every linear equality holding for the ag vetor of all Eulerianposets of rank n+ 1 is a onsequene of these equations.6



Next we present generalizations of the M�obius funtion and of Eulerianposets.De�nition 2 The k-M�obius funtion of a graded poset is de�ned reursivelyby the formula�k([x; y℄) = ( 1 if x = y;�1� 1k Px<z<y �k([x; z℄) otherwise:The following proposition gives the k-M�obius funtion of a poset P asa k-analogue of the redued Euler harateristi of the order omplex ofP . It is a generalization of Philip Hall's theorem, and is easy to prove byindution.Proposition 4.2 If P is a graded poset of rank n+ 1, then�k(P ) = � XS�[1;n℄(�1k )jSjfn+1S (P ):A graded poset is k-Eulerian if for every interval [x; y℄ � P , �k([x; y℄) =(�1)�(x;y). Note that 1-Eulerian is the same as Eulerian. The followingproposition follows easily from the de�nitions.Proposition 4.3 If P is a k-Eulerian poset of rank n+ 1, then1. every interval of P is k-Eulerian2. nXi=1(�1)i�1fi(P ) = k(1 � (�1)n)The thikening operation introdued in Setion 3 onnets the k-M�obiusfuntion for di�erent values of k.Proposition 4.4 Let [x; y℄ be an interval of a graded poset P and ` a posi-tive integer. Consider an interval [xi; yj℄ � D`P orresponding to [x; y℄ � P .Then �k([x; y℄) = �k`([xi; yj℄):Proof: Reall that fS(D`P ) = `jSjfS(P ). Sine the interval [xi; yj ℄ of D`Pis isomorphi to D`[x; y℄, the result is obtained by substitution in Proposi-tion 4.2. 2Corollary 4.5 A poset P is k-Eulerian if and only if D`P is k`-Eulerian.7



In [3℄ a half-Eulerian poset was de�ned to be a poset P for whih D2P isEulerian.Using Proposition 4.4 we an determine exatly the set of those k's forwhih k-Eulerian posets exist.Theorem 4.6 For every positive integer n, there exists a k-Eulerian posetof rank n+ 1 if and only if k = j=2 for some positive integer j. Moreover,every k-Eulerian poset is 2k-thik.Proof: The hain C of rank n+1 is half-Eulerian. For every positive integerj, DjC is a j=2-Eulerian poset. On the other hand, by the de�nition of thefuntion �k, for an interval [x; y℄ of rank 2 in a k-Eulerian poset,(�1)2 = �k([x; y℄) = �1� 1=k Xx<z<y �1=k([x; z℄) = �1� 1k Xx<z<y(�1):Therefore 2k is the number of elements z stritly between x and y. Thus, ifP is a k-Eulerian poset, then 2k is a positive integer, and P is 2k-thik. 2It is easy to hek by indution that a graded poset is half-Eulerianif and only if (1) in every interval [x; y℄ with �(x; y) odd, the number ofelements of even rank equals the number of elements of odd rank; and (2) inevery interval [x; y℄ with �(x; y) even, the number of elements z with �(x; z)even is one more than the number of elements z with �(x; z) odd. Thisharaterization an be used to hek that the following \vertial doubling"of an arbitrary graded poset produes a half-Eulerian poset. Let P be anygraded poset with relation �P . Form the set Q = f0̂; 1̂g [ fx1; x2 : x 2P n f0̂; 1̂gg. De�ne a relation �Q on Q by u �Q v if and only if one of thefollowing holds:� u = 0̂, v 2 P n f0̂g� v = 1̂, u 2 P n f1̂g� u = x1 and v = x2 for some x 2 P n f0̂; 1̂g� u = xi and v = yj for some x; y 2 P n f0̂; 1̂g, with x �P y.If P is a rank n+1 graded poset, then the resulting poset Q is a rank 2n+1half-Eulerian poset.For larger k, not all k-Eulerian posets are obtained by the thikeningoperation. For an example, onsider the poset P of rank n+ 1 � 3 havingelements x1, x2, . . . , xm of rank 1, elements y1, y2, . . . , ym of rank 2, withxi < yj if and only if i = j, and one element of eah other rank. It is easyto hek that P is half-Eulerian, and so D2kP is k-Eulerian. In the Hassediagram of D2kP , the subgraph indued by the elements of ranks 1 and 28



onsists of m opies of the omplete bipartite graph K2k;2k. Replae thissubgraph by any other 2k-regular bipartite graph on these elements. Theresulting graph is the Hasse diagram of another k-Eulerian poset. (Notethat the only relations hanged in the poset are those between rank 1 andrank 2 elements.)The de�nition of k-Eulerian, like that of r-thik, an be generalized byvarying the multiplier k with the rank of the elements. The results of thisand the next setion an easily be adapted for suh posets.5 The ag Lk-vetorA ertain transformation of the ag f -vetor was useful in [8℄, [5℄, and [3℄.It has a natural adaptation to the k-Eulerian setting.De�nition 3 The ag Lk-vetor of a graded partially ordered set P of rankn+ 1 is the vetor (Lk;n+1S (P ) : S � [1; n℄), whereLk;n+1S (P ) = (�1)n�jSj XT�[1;n℄nS�� 12k�jT j fn+1T (P ):For k = 1=2 this is the `-vetor of [5℄; for k = 1 this is the \e-index" of [8℄and the L-vetor of [3℄. The formula inverts to givefn+1S (P ) = (2k)jSj XT�[1;n℄nSLk;n+1T (P ): (4)The Lk-vetor ignores the e�et of the operator D`. If P is a graded posetof rank n+ 1, then Lk`;n+1S (D`P ) = Lk;n+1S (P ): (5)A set S � [1; n℄ is even if S is a disjoint union of intervals of evenardinality. The parameters Lk;n+1S for even sets S play a speial role fork-Eulerian posets. The k-analogue of Theorem 4.1 is the following.Theorem 5.1 For every k-Eulerian poset P of rank n + 1, every subsetS � [1; n℄, and every maximal interval [i; `℄ of [1; n℄ n S,k �(�1)i�1 + (�1)`+1� fS(P ) + X̀j=i(�1)jfS[fjg(P ) = 0:Every linear equality holding for the ag vetor of all k-Eulerian posets ofrank n+ 1 is a onsequene of these equations.In Lk-vetor form, these equations are equivalent to the set of equationsLk;n+1S (P ) = 0 for all subsets S � [1; n℄ that are not even.9



Call these equations the generalized Dehn-Sommerville equations, and de-note by DSk;n+1 the resulting subspae of R2n .Proof: The fat that the equations (in ag f -vetor form) hold for all k-Eulerian posets follows from Proposition 4.3. Fix a set S with gap [i; `℄. Foreah S-hain identify the rank i�1 element x and rank `+1 element y, andapply equation (2) to the interval [x; y℄. Sum the resulting equations for allthe S-hains.Convert the ag f -vetor equations using equation (4). Writing V =[1; n℄ n S and dividing by 2jSjkjSj+1, the result is�(�1)i�1 + (�1)`+1� XT�V Lk;n+1T + 2X̀j=i(�1)j XT�V nfjgLk;n+1T = 0: (6)From this we prove by indution that Lk;n+1V (P ) = 0 (abbreviated as LV = 0)for all noneven sets V . Let V � [1; n℄ be any noneven set, and let [i; `℄ bean odd maximal interval of V . Equation (6) givesXT�V LT + X̀j=i(�1)j�i+1 XT�V nfjgLT = 0: (7)If T is a noneven proper subset of V , then by the indution assumption,LT = 0. So onsider an even subset T � V . Sine the maximal intervals ofT ontained in [i; `℄ are even, [i; `℄nT = fj1; j2; : : : ; jtg, where t is odd, j1� iis even, and, for 2 � p � t, jp�jp�1 is odd. Thus, for 1 � p � t, jp�i+1 hasthe same parity as p. The oeÆient of LT in (7) is 1 +Ptp=1(�1)jp�i+1 =1 +Ptp=1(�1)p = 0. So equation (7) redues to LV = 0.Conversely, suppose LV = 0 for all noneven sets V � [1; n℄. We showthat the equations in (6) hold. Let V � [1; n℄ and [i; `℄ a maximal inter-val of V . For ` � i even, we need to prove equation (7). (The ase of` � i odd is similar, and is omitted.) It suÆes to onsider the terms LTwith T an even set. For suh T , [i; `℄ n T = fj1; j2; : : : ; jtg as above, witht odd, and jp � i + 1 � p (mod 2). So the oeÆient in (7) of LT is1 +Ptp=1(�1)jp�i+1 = 1 +Ptp=1(�1)p = 0. Thus equation (7) holds.To omplete the proof, it suÆes to show that the linear span of the Lk-vetors of k-Eulerian posets of rank n+1 is the subspae of R2n determinedby the equations Lk;n+1S (P ) = 0 for all subsets S � [1; n℄ that are not even.This an be aomplished by �nding a set of linearly independent vetorsin the span of the Lk-vetors of k-Eulerian posets, one vetor for eah evensubset S � [1; n℄. In [5℄ Billera and Hetyei onstruted, for eah interval10



system I, a sequene of graded posets P (n;I; N). The onstrution startswith a rank n+ 1 hain, and repliates intervals of ranks in the poset. Foran even set S, let I[S℄ be the set of maximal intervals in S. (For example,for S = f1; 3; 4; 7; 8; 9; 10g, I[S℄ = f[1℄; [3; 4℄; [7; 10℄g.) If S is an even subsetof [1; n℄, then P (n;I[S℄; N) is half-Eulerian for all N . Furthermore, thesequene of L1=2-vetors of these posets satis�es the following. Here m isthe number of intervals in I[S℄.limN�!1 1NmL1=2;n+1T (P (n;I[S℄; N)) = ( (�1)j if T is the union of j intervals of S,0 otherwise:(See [3℄ for details.) Using (5), we get for any positive integer 2k,limN�!1 1NmLk;n+1T �D2kP (n;I[S℄; N)� = ( (�1)j if T is the union of j intervals of S,0 otherwise:For �xed k the limiting Lk-vetors for eah even interval system I[S℄ arelinearly independent, sine for eah even set S, the vetor formed from thesequene (P (n;I[S℄; N)) has T -entry 0 for all T not ontaining S. 2A ag vetor an by hane lie in the subspae DSk;n+1 without theposet being k-Eulerian. However, k-Eulerian posets are haraterized bythe equations holding loally. The k = 1 ase of this is in [3℄. The proofrequires the onvolution of ag operators, de�ned by Kalai [7℄ (see also[6℄). It is de�ned for the ag numbers by fmS � fnT = fm+nS[fmg[(T+m), and isextended by bilinearity to linear ombinations. For pm+1 and qn+1 linearombinations of hain operators in ranks m+1 and n+1, respetively, theironvolution on a rank m+ n poset P satis�espm+1 � qn+1(P ) = Xx2P�(x)=m pm+1([0̂; x℄)qn+1([x; 1̂℄):Convolution behaves niely on the ag Lk-vetor. For a rank m + n + 2poset P ,Lk;m+1S �Lk;n+1T (P ) = Xx2P�(x)=m+1 Lk;m+1S ([0̂; x℄)Lk;n+1T ([x; 1̂℄) = 2kLk;m+n+2S[(T+m+1)(P ):(8)Theorem 5.2 A graded partially ordered set P is k-Eulerian if and only iffor every interval [x; y℄ � P of positive even rank Lk;�(x;y)[1;�(x;y)�1℄([x; y℄) = 0.11



Proof: Sine every interval of a k-Eulerian partially ordered set is k-Eulerian, Theorem 5.1 gives that Lk;�(x;y)[1;�(x;y)�1℄([x; y℄) = 0 for all intervals[x; y℄ of positive even rank.Now assume that for every interval [x; y℄ of positive even rank,Lk;�(x;y)[1;�(x;y)�1℄([x; y℄) = 0. Then by equation (8), for every interval [x; y℄ � Pand for every S � [1; �(x; y) � 1℄ that is not even, Lk;�([x;y℄)S ([x; y℄) = 0.For P of rank n+ 1, by Proposition 4.2,�k(P ) = � XS�[1;n℄(�1k )jSjfn+1S (P ) = � XS�[1;n℄(�1k )jSj(2k)jSj XT�[1;n℄nSLk;n+1T (P )= � XT�[1;n℄Lk;n+1T (P ) XS�[1;n℄nT(�2)jSj = � XT�[1;n℄Ln+1T (P )(�1)n�jT j:Sine Lk;n+1T (P ) is nonzero only if T is an even set, and then jT j is an evennumber,�k(P ) = (�1)n+1 XT�[1;n℄Ln+1T (P ) = (�1)n+1fn+1; (P ) = (�1)n+1:The same argument an be repeated for every interval of P , showing that itis a k-Eulerian poset. 2Using this result, we get the following urious haraterization via theM�obius funtion.Theorem 5.3 A graded poset P is k-Eulerian if and only if the 2k-M�obiusfuntion of every interval [x; y℄ � P of even rank is zero.Proof: Let P be a graded poset. By Corollary 4.5 P is Eulerian if and onlyif D2P is 2k-Eulerian if and only if for every interval [xi; yj℄ of D2P with�(xi; yj) even L2k;�(xi;yj)[1;�(xi;yj)�1℄([xi; yj℄) = 0if and only if for every interval [xi; yj ℄ of D2P with �(xi; yj) evenXT�[1;�(xi;yj)�1℄(� 14k )jT jfT ([xi; yj ℄) = 0if and only if for every interval [x; y℄ of P with �(x; y) evenXT�[1;�(x;y)�1℄(� 14k )jT j2jT jfT ([x; y℄) = 012



if and only if for every interval [x; y℄ of P with �(x; y) evenXT�[1;�(x;y)�1℄(� 12k )jT jfT ([x; y℄) = 0if and only if for every interval [x; y℄ of P with �(x; y) even �2k([x; y℄) = 0.2 In partiular, a graded poset P is half-Eulerian if and only if the (usual)M�obius funtion of [x; y℄ is zero for every [x; y℄ � P of even rank.The L1-vetor of a graded poset is the vetor of oeÆients of the e-index, introdued in [8℄ as a variation of the d-index of an Eulerian poset.(The d-index of an Eulerian poset, due to Fine (see [4℄), is a vetor linearlyequivalent to the ag vetor; it embodies the generalized Dehn-Sommervilleequations of Theorem 4.1.) In [8℄, Stanley observed that the existene ofthe d-index for a graded poset is equivalent to the vanishing of the oeÆ-ients of e-words ontaining an odd string of e's; in our notation this saysL1;n+1S (P ) = 0 for all subsets S � [1; n℄ that are not even. Thus the lastpart of Theorem 5.1 (as well as the �rst part) is already known for k = 1.The Lk-vetor for general k an be presented in the same way. For P anygraded poset of rank n+1, write a generating funtion for the ag f -vetoras follows: �(a; b) = XS�[1;n℄ fSuS ;where uS = u1u2 : : : un with ui = a if i 62 S and ui = b if i 2 S. then�(e; � e2k ) = XT�[1;n℄LT vT ;where vT = v1v2 : : : vn with vi =  if i 62 T and vi = e if i 2 T . The equationsof Theorem 5.1 for k-Eulerian posets an then be rephrased as saying that�(e; (� e)=(2k)) is a polynomial in (the nonommuting expressions)  andee.6 The one of k-Eulerian ag vetorsTheorem 3.1, along with the desription of the one of ag vetors of generalgraded posets ([5℄), an be used to generate all the inequalities valid for allr-thik posets. The inequalities for 2k-thik posets are, in partiular, validfor all k-Eulerian posets, but they may not be sharp. We would like to know13



the essential inequalities, that is, the losed ones of ag vetors of Eulerianand of half-Eulerian posets. In [3℄ these ones are studied and are ompletelydetermined up through rank 7. (See also [2℄ for data on the one.) In theontext of this paper, the results an be stated as follows.Theorem 6.1 ([3℄) For rank n+ 1 � 7,1. the losed one of ag vetors of half-Eulerian posets of rank n+ 1 isthe intersetion of the one C1;n+1 of ag vetors of all graded posets ofrank n+1 with the subspae DS1=2;n+1 determined by the half-Eulerianequations of Theorem 5.1;2. the losed one of ag vetors of Eulerian posets of rank n + 1 isthe intersetion of the one C2;n+1 of ag vetors of all 2-thik gradedposets of rank n + 1 with the generalized Dehn-Sommerville subspaeDS1;n+1; and3. the two ones are isomorphi.We do not know if this theorem extends to higher ranks. However, forall ranks, part 1 of the theorem implies parts 2 and 3.Theorem 6.2 Let CONEk;n+1 be the statement,The losed one of ag vetors of k-Eulerian posets of rank n+ 1is the intersetion of the one C2k;n+1 of ag vetors of all 2k-thik graded posets of rank n + 1 with the generalized Dehn-Sommerville spae DSk;n+1.For all k � 1 (with 2k an integer) and all positive integers n,CONE1=2;n+1 =) CONEk;n+1:Proof: Reall the map �1;2k of Corollary 3.2; it maps C1;n+1 onto C2k;n+1.Clearly it also mapsDS1=2;n+1 onto DSk;n+1. So �1;2k(C1;n+1\DS1=2;n+1) =C2k;n+1 \ DSk;n+1, whih ontains the one of k-Eulerian ag vetors. Onthe other hand, for any half-Eulerian poset P , �1;2k((fS(P ))) = (fS(D2kP )),the ag vetor of the k-Eulerian poset D2kP . If CONE1=2;n+1 holds, thenC1;n+1 \ DS1=2;n+1 is the one of half-Eulerian ag vetors, and its imageis ontained in the one of k-Eulerian ag vetors. Thus, if CONE1=2;n+1holds, then C2k;n+1 \ DSk;n+1 is exatly the losed one of ag vetors ofk-Eulerian posets. 214



Another question raised in [3℄ on the struture of these ones an beanswered. For rank at most 7, all faet inequalities of the half-Eulerian(and with slight modi�ation, Eulerian) one are generated from two basitypes of inequalities.Theorem 6.3 ([3℄) Let S and T be disjoint subsets of [1; n℄, suh that everymaximal interval of the omplement of S ontains at most one element ofT . Then for every rank n+ 1 half-Eulerian poset P ,XR�T (�1)jTnRjfS[R(P ) � 0:Let 1 � i < j < ` � n. Then for every rank n+ 1 half-Eulerian poset P ,fi`(P )� fi(P )� f`(P ) + fj(P ) � 0:Other valid inequalities are obtained by the onvolution of inequalities ofthese types. The question arose whether these generate all inequalities validfor the ag vetors of all half-Eulerian posets. They do not.Proposition 6.4 For all half-Eulerian posets P of rank 8,f81356(P )�f8135(P )�f8356(P )+f815(P )�f816(P )+f835(P )+f836(P )�f83 (P ) � 0;or, in L1=2-vetor form,L1=2;845 (P ) + L1=2;82345 (P ) + L1=2;856 (P ) + L1=2;81256 (P )� L1=2;82367 (P )� L1=2;83467 (P ) + L1=2;84567 (P ) + L1=2;8124567(P ) � 0: (9)This inequality determines a faet of the losed one of ag vetors of half-Eulerian posets, and does not follow from the inequalities of Proposition 6.3.The proposition remains valid if \half-Eulerian" is replaed by k-Eulerian,and eah fS is replaed by (2k)n�jSjfS.Proof: We �rst show the inequality is not a onvolution of lower rankinequalities. In Lk-vetor form the onvolution satis�es the rule Lk;i+1T �Lk;j+1V = 2kLk;i+j+2T[(V+i+1) (see equation 8). So the onvolution of linear ex-pressions for ranks i+1 and j+1 with n = i+j+1 gives a linear ombinationof Lk;n+1S involving only subsets S � [1; n℄ not ontaining i+1. Sine eah el-ement of [1; 7℄ ours in some set S in the inequality 9, it is not a onvolutionof lower rank inequalities.We now show that the inequality determines a faet of the one. Billeraand Hetyei list the faet inequalities for the general graded one up through15



rank 5. The inequality of the proposition omes from applying one of therank 5 Billera-Hetyei inequalities to the rank-seleted subposet Pf1;3;5;6g ofan arbitrary half-Eulerian poset P . To hek it is a faet of the half-Eulerianone, we give twenty linearly independent limiting normalized L1=2-vetorsof half-Eulerian posets, for whih the inequality holds with equality. The�rst sixteen posets are Billera-Hetyei limit posets determined by intervalsystems as in the following table.P1 ; P7 [1; 2℄[5; 6℄ P12 [1; 4℄[6; 7℄P2 [1; 2℄ P8 [1; 2℄[3; 4℄[5; 6℄ P13 [4; 5℄[6; 7℄P3 [2; 3℄ P9 [3; 6℄ P14 [2; 3℄[4; 5℄[6; 7℄P4 [3; 4℄ P10 [6; 7℄ P15 [1; 2℄[4; 7℄P5 [1; 2℄[3; 4℄ P11 [1; 2℄[6; 7℄ P16 [2; 7℄P6 [2; 3℄[4; 5℄The next three limit posets are obtained from the rank 7 Extremes 2,3 and 4 of [3, Theorem 4.8℄ by inserting a single new element of rank 1,shifting the old elements up one rank.To desribe the last sequene of posets, let us (re)introdue the followinggeneralization of the operator Dr. Given a graded poset P of rank n+ 1denote by Dr[u;v℄(P ) the poset obtained from P by replaing eah x 2 Psatisfying �(x) 2 [u; v℄ with r elements x1; x2; : : : ; xr (keep every y 2 P sat-isfying �(y) 62 [u; v℄ unhanged), and by setting the following order relations.The ([1; n℄n [u; v℄)-rank-seleted subposet of P and of Dr[u;v℄(P ) are idential.For x; y 2 P satisfying �(x) 2 [u; v℄ and �(y) 62 [u; v℄ set xi < y or xi > yin Dr[u;v℄(P ) if and only of the same relation holds between x and y in P .Finally for x; y 2 P satisfying u � �(x) < �(y) � v set xi < yj in Dr[u;v℄(P )if and only if i = j and x < y in P .For example, Figure 1 shows D2[1;2℄(C4) where C4 is a hain of rank 4.Note that for a graded poset P of rank n + 1 the graded poset Dr(P ) isisomorphi to Dr[1;1℄Dr[2;2℄ : : : Dr[n;n℄(P ). The same notation is used in [3℄.Let N be an arbitrary positive integer, and C8 be a hain of rank 8.Consider now the following four graded posets.P I(N) = DN+1[1;2℄ DN+1[2;3℄ DN+1[4;5℄ DN[1;7℄(C8)P II(N) = DN2[1;3℄DN+1[1;5℄ DN[1;7℄(C8)P III(N) = DN2�N+2[1;4℄ DN+2[4;5℄ DN[6;7℄(C8)P IV (N) = DN+2[1;2℄ DN3�N2+2[2;7℄ (C8)16
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1̂������������Figure 1: D2[1;2℄(C4)The f4; 5; 6; 7g-rank-seleted subposets of P I(N) and P II(N) are both iso-morphi to DN+1[1;2℄ DN[1;4℄(C5), where C5 is a hain of rank 5; the f6; 7g-rank-seleted subposets of P I(N), P II(N), and P III(N) are all isomorphi toDN[1;2℄(C3) where C3 is a hain of rank 3. Let P (N) be the graded poset ofrank 8 obtained from P I(N), P II(N), P III(N), and P IV (N) by performingthe following identi�ations:-identify the bottom element 0̂ of all four posets,-identify the top element 1̂ of all four posets,-identify P I(N)f4;5;6;7g with P II(N)f4;5;6;7g,-identify P I(N)f6;7g with P III(N)f6;7g.Figure 2 indiates how the four posets are identi�ed, in a shemati way.Straightforward alulation shows that P (N) is a half-Eulerian poset, foreah positiveN . Furthermore the normalized L1=2-vetors, (L1=2;8S (P (N))=N4),onverge.The rows of the matrix below are the normalized L1=2-vetors of thetwenty limit posets. In the olumns are the values of L1=2;8S (divided by theappropriate power of N), with the sets S in the order ;, f1; 2g, f2; 3g, f3; 4g,f1; 2; 3; 4g, f4; 5g, f1; 2; 4; 5g, f2; 3; 4; 5g, f5; 6g, f1; 2; 5; 6g, f2; 3; 5; 6g, f3; 4; 5; 6g,f1; 2; 3; 4; 5; 6g, f6; 7g, f1; 2; 6; 7g, f2; 3; 6; 7g, f3; 4; 6; 7g, f1; 2; 3; 4; 6; 7g, f4; 5; 6; 7g,f1; 2; 4; 5; 6; 7g, f2; 3; 4; 5; 6; 7g. It is easy to hek the rows are linearly in-dependent.
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