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eah dimension (the f -vetor), the graph onsisting of the verties and edges,and the polyhedral and simpliial omplexes that subdivide the polytope.(The latter are not stritly speaking ombinatorial. Di�erent polytopes withthe same fae lattie an have di�erent geometri subdivisions.)The greatest progress in understanding ombinatorial properties of on-vex polytopes has been made for the speial lass of simpliial polytopes.A simplex is the onvex hull of aÆnely independent points. A polytope issimpliial if all its (proper) faes are simplies. A milestone was the hara-terization of the f -vetors of simpliial polytopes, onjetured by MMullen([10℄), and proved by Billera and Lee ([3℄) and Stanley ([12℄). In this workas well as researh on triangulations of simpliial polytopes, the yli poly-topes play a speial role. These are simpliial polytopes, with verties hosenas points on the moment urve, f(t; t2; t3; : : : ; td) : t 2 Rg. The ombina-torial struture of the yli polytope depends only on the number, not theplaement, of the points on the moment urve.The ombinatorial study of general polytopes is hampered by the diÆ-ulty in generating random ombinatorial strutures. A polytope in generalposition, that is, one formed by hoosing points at random and taking theironvex hull, is generally simpliial. An alternative onstrution, of interset-ing a randomly-hosen set of hyperplanes, produes simple polytopes, whihhave fae latties dual to simpliial polytopes. Various geometri operations(for example, pyramiding, and trunation) an be performed on polytopesto produe nonsimplex faes, but the e�et of these on the fae lattie isquite ontrolled.Bisztrizky ([6℄) de�nes a lass of nonsimpliial polytopes alled ordinarypolytopes. The faes of ordinary polytopes are multiplexes, whih generalizethe simplex in a ombinatorial way, but are generally not simpliial. Aspeial ase of the ordinary polytope is the yli polytope. Thus, ordinarypolytopes hold out promise of playing an important role in the ombinatorialstudy of nonsimpliial polytopes. In this paper we ontinue the study ofmultiplexes and ordinary polytopes begun by Bisztrizky ([5, 6℄) and Dinh([7℄).2 MultiplexesBisztrizky de�nes a multiplex as a generalization of a simplex.De�nition 1 ([5℄) Amultiplex is a polytope with an ordered list of verties,x0, x1, . . . , xn, with faets F0, F1, . . . , Fn given byFi = onvfxi�d+1; xi�d+2; : : : ; xi�1; xi+1; xi+2; : : : ; xi+d�1g;2



with the onventions that xi = x0 if i < 0, and xi = xn if i > n.Note that if n = d, then the multiplex is a simplex. It is easy to hek thatfor n = d+1, the multiplex is a (d�2)-fold pyramid over a quadrilateral withvertex set fx0; x1; xd; xd+1g. Multiplexes are not all pyramids, however. Ev-ery polygon (two-dimensional polytope) is a multiplex with an appropriateordering of verties. Following are important results about multiplexes byBisztrizky. For n � d � 2, let Md;n be the d-dimensional multiplex withn+ 1 verties.Theorem 2.1 ([5℄) 1. Md;n exists for every d and n with n � d � 2.2. Every multiplex is self-dual.3. Every fae and every quotient of a multiplex is a multiplex.4. The number of i-dimensional faes of Md;n is �d+1i+1�+ (n� d)�d�1i �.The f -vetor of Md;n is the same as the f -vetor of a ertain pyra-mid over a polygon. This fat extends to the \ag vetor" of the multi-plex. A hain of faes, ; � F1 � F2 � � � � � Fr � P is an S-ag ifS = fdimF1;dimF2; : : : ;dim frg. The number of S-ags of a polytope Pis written fS(P ), and the length 2d vetor (fS(P ))S�f0;1;:::;d�1g is the agvetor of P .Theorem 2.2 The multiplex Md;n has the same ag vetor as the (d� 2)-fold pyramid over the (n � d + 3)-gon. The ommon ag vetor is givenby fS =  d+ 1s1 + 1, s2 � s1, . . . , sr � sr�1, d� sr! (1)�241 + n� d(d+ 1)d(d � 1) rXj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)35 ;where S = fs1; s2; : : : ; srg, and sr+1 = d.Proof: We �rst prove that the ag vetor of the pyramid is given by equa-tion (1). Form � 0 let Qd;m be the (d�2)-fold pyramid over the (m+3)-gon.Let T d be the d-simplex. We prove by indution on jSj thatfS(Qd;m)� fS(T d) =  d+ 1s1 + 1, s2 � s1, . . . , sr � sr�1, d� sr!� m(d+ 1)d(d � 1) rXj=1(sj + 1)(sj+1 � sj)(sj+1 � 1):3



The formula is valid for S = ;, sine the sum is empty. We need the jSj = 1ase as well. Write S = fs1g.fs1(Qd;m)� fs1(T d) = 2Xi=�1 d� 2s1 � i!fi((m+ 3)-gon)�  d+ 1s1 + 1!=  d� 2s1 + 1!+ d� 2s1 !(m+ 3) +  d� 2s1 � 1!(m+ 3) +  d� 2s1 � 2!� d+ 1s1 + 1!=  d� 1s1 !m =  d+ 1s1 + 1! m(d+ 1)d(d � 1)(s1 + 1)(d� s1)(d � 1):For the indution step we write fS in terms of fSnfsrg. We need two basiombinatorial fats. For a simplex T q,fS(T q) =  q + 1s1 + 1, s2 � s1, . . . , sr � sr�1,q � sr!:The sr-faes of the pyramid Qd;m are all either (sr � 2)-fold pyramids overthe (m+3)-gon or simplies. Let Tr be the set of sr-faes that are simplies.Let Pr be the set of sr-faes that are pyramids (not simplies); the numberof suh faes is � d�2sr�2�. Thus,fS(Qd;m)� fS(T d) =XF2Pr fSnfsrg(F ) + XF2Tr fSnfsrg(F )�  d+ 1s1 + 1, s2 � s1, . . . , sr � sr�1,d� sr!=  d� 2sr � 2!fSnfsrg(Qsr;m)+ fsr(Qd;m)�  d� 2sr � 2!! sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!�  d+ 1s1 + 1, s2 � s1, . . . , sr � sr�1,d� sr!=  d� 2sr � 2!(fSnfsrg(Qsr;m)� fSnfsrg(T sr))+  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!(fsr(Qd;m)� fsr(T d))
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=  d� 2sr � 2! sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!� m(sr + 1)sr(sr � 1) rXj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)+  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1! d+ 1sr + 1! m(d+ 1)d(d � 1)(sr + 1)(d� sr)(d� 1)=  d+ 1s1 + 1, s2 � s1, . . . , sr � sr�1, d� sr!� m(d+ 1)d(d � 1) rXj=1(sj + 1)(sj+1 � sj)(sj+1 � 1):So the formula for the ag vetor of the (d � 2)-fold pyramid over the(n� d+ 3)-gon is valid.Now we show that the same formula holds for the multiplex. This isproved by a reursion di�erent from the one used for the pyramid. Reallthe formula for the f -vetor of the multiplex Md;n in Theorem 2.1.fi(Mn;d) =  d+ 1i+ 1!+ (n� d) d� 1i !:This is easily seen to agree with equation (1) for S = fig. Next is theproof for the speial ase where S = f0; ig. For x a vertex of Md;n, write[x;Md;n℄ for the quotient of the polytopeMd;n by the vertex x. This is itselfa multiplex of dimension d� 1.f0;i(Md;n) = Xx vertex of Md;n fi�1([x;Md;n℄)= Xx vertex of Md;n  di!+ (f0([x;Md;n℄)� d) d� 2i� 1!= (n+ 1) di!� (n+ 1)d d� 2i� 1!+  d� 2i� 1! Xx vertex of Md;n f0([x;Md;n℄)= (n+ 1) di!� (n+ 1)d d� 2i� 1!+  d� 2i� 1!f0;1(Md;n)= (n+ 1) di!� (n+ 1)d d� 2i� 1!+  d� 2i� 1!2f1(Md;n)5



= (n+ 1) di!� (n+ 1)d d� 2i� 1!+  d� 2i� 1!(d(d+ 1) + 2(n� d)(d� 1)= (n+ 1) di!+ (d� 2)(n� d) d� 2i� 1!:This an be shown to agree with equation (1). We now show that equa-tion (1) holds by indution on jSj.fS(Md;n) = XF sr-fae of Md;n fSnfsrg(F )= XF sr-fae of Md;n fSnfsrg(M sr;f0(F )�1))= XF sr-fae of Md;n sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!�241 + f0(F )� sr � 1(sr + 1)sr(sr � 1) r�1Xj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)35=  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!�241� sr + 1(sr + 1)sr(sr � 1) r�1Xj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)35 XF sr-fae of Md;n 1+  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!�24 1(sr + 1)sr(sr � 1) r�1Xj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)35 XF sr-fae of Md;n f0(F )=  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!�241� sr + 1(sr + 1)sr(sr � 1) r�1Xj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)35 fsr(Md;n)+  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!6



�24 1(sr + 1)sr(sr � 1) r�1Xj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)35 f0;sr(Md;n)=  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1!�241� sr + 1(sr + 1)sr(sr � 1) r�1Xj=1(sj + 1)(sj+1 � sj)(sj+1 � 1)35� " d+ 1sr + 1!+ (n� d) d� 1sr !#+  sr + 1s1 + 1, s2 � s1, . . . , sr � sr�1! 1(sr + 1)sr(sr � 1)� r�1Xj=1(sj + 1)(sj+1 � sj)(sj+1 � 1) "(n+ 1) dsr!+ (d� 2)(n� d) d� 2sr � 1!# :Algebrai manipulation gives equation (1). 2The tori h-vetor of a polytope is a length d+1 vetor whose omponentsare linear funtions of the ag vetor. When the polytope has rationalverties, the tori h-vetor is the sequene of middle perversity intersetionhomology Betti numbers of the assoiated tori variety. (The multiplex hasa rational realization.) The tori h-vetor for Eulerian posets (inludingfae latties of polytopes) is de�ned by Stanley ([13℄); see [2℄ for formulas interms of the ag vetor. Sine it depends only on the ag vetor, the torih-vetor of the multiplex is the same as the tori h-vetor of the pyramidover the appropriate polygon. The h-vetor of Md;n is thush(Md;n) = (1; 1; 1; : : : ; 1; 1) + (n� d)(0; 1; 1; : : : ; 1; 0):A d-dimensional polytope P is elementary if and only if the seond andthird entries in the tori h-vetor are equal. In terms of the ag vetor, thissays f02(P )� 3f2(P ) + f1(P )� df0(P ) + �d+12 � = 0. (See [9℄.)Corollary 2.3 For every n � d � 2, the multiplex Md;n is an elementarypolytope.Every fae of a multiplex is a multiplex, but not all multiplexes are faesof higher dimensional multiplexes. 7



Proposition 2.4 The multiplex Md;n is a proper fae of some multiplex ifand only if d � n � 2d� 1.Proof: Assume M is a d-dimensional multiplex with n + 1 verties, andsuppose M is a proper fae of some higher dimensional multiplex M . ThenM is a faet of a multiplex of dimension d+1, namely, any (d+1)-dimensionalfae of M ontaining M . Aording to the desription of the faets in thede�nition of multiplex, M has at most 2d verties. So d+ 1 � n+ 1 � 2d.To prove the onverse, let Q be the (d + 1)-dimensional multiplex with2d+ 1 verties. The faets of Q areFi = onvfxi�d; xi�d+1; : : : ; xi�1; xi+1; xi+2; : : : ; xi+dg;for 0 � i � 2d. For 1 � i � d, Fi is a faet of Q with i + d verties. Thusamong the proper faes of Q are the d-multiplexes with n + 1 verties forevery n, d � n � 2d� 1. 2Note that by Theorem 2.1, every polygon is a multiplex. However,Proposition 2.4 says that the two-dimensional faes of higher dimensionalmultiplexes an only be triangles and quadrilaterals.We turn now to the graphs of multiplexes.Theorem 2.5 (Bisztrizky [5℄) Let Md;n be the multiplex with vertex setfx0; x1; : : : ; xng. The edges of Md;n are� onvfxi; xjg, where 0 � i < j � n and j � i � d� 2� onvfxi; xi+dg, where 0 � i � n� d� onvfx0; xd�1g� onvfxn�d+1; xng.There is a signi�ant literature on the subjet of reonstruting a poly-tope from its graph. For simpliial polytopes, the reonstrution probleman be phrased as the problem of deiding when the verties of a ompletesubgraph span a fae of the polytope. The latter problem also arises whenstudying triangulations of polytopes.Theorem 2.6 Every omplete subgraph of the graph of a multiplex is thegraph of a fae of the multiplex. 8



Proof: LetG be the graph of the multiplexMd;n. LetX = fx`0 ; x`1 ; : : : ; x`tg� vert(P ) with `0 < `1 < � � � < `t suh that for all i; j 2 f0; 1; : : : ; tg,fx`i ; x`jg is an edge of G.Case 1. If `0 = 0, then `t � d. Note that fx1; xdg is not an edge of G,so it is not a subset of X. Thus X is ontained in either the faet F0 orthe faet F1 of the multiplex Md;n. Sine both those faets are simplies,onv(X) is a simplex that is a fae of Md;n.If `t = n, the argument is similar.Case 2. Assume 0 < `0 < `t < n. Note that eah vertex xi of Md;n isontained in exatly the faets Fi�d+1, Fi�d+2, . . . , Fi�1, Fi+1, Fi+2, . . . ,Fi+d�1. Here we use the onventions that Fi = F0 if i < 0, and Fi =Fn if i > n. (The self-duality of Md;n is expressed in the ombinatorialdesription.) Thus the set X is ontained in the faet Fj if and only if`t � d + 1 � j � `0 + d � 1 and j 62 f`0; `1; : : : ; `tg. (This statement is nottrue if `0 = 0 or `t = n.) Let a = minf0; `t�d+1g and b = maxfn; `0+d�1g.Then we an write the set J = fj : X � Fjg as J = [a; b℄ n f`0; `1; : : : ; `tg.The set of verties in \j2JFj is exatly X, i.e., \j2JFj = onv(X). To hekthis, we need to know that fa; bg � J . If a = 0, then a 2 J . Otherwise notethat sine x`0 and x`t are assumed to be adjaent, either `t � d+ 1 < `0 (soa 2 J), or `t = `0 + d. In the latter ase, a = `t � d + 1 = `0 + 1. Sinex`0+1 is not adjaent to x`t = x`0+d, a = `0 + 1 62 f`0; `1; : : : ; `tg, so a 2 J .Similarly, b 2 J . Now suppose i 62 f`0; `1; : : : ; `tg; we wish to show thatxi 62 \j2JFj. If i < a, then xi 62 Fb. If i > b, then xi 62 Fa. If a � i � b, thenxi 2 \j2JFj if and only if i 2 f`0; `1; : : : ; `tg. Thus if i 62 f`0; `1; : : : ; `tg,then xi 62 \j2JFj , i.e., \j2JFj = onv(X).Now observe that this argument is also valid for every subsequene of`0 < `1 < � � � < `t. Thus, for every Y � X, onv(Y ) is a fae of Md;n, andso also a fae of onv(X). Therefore onv(X) is a simplex. 2This last theorem enables us to ount the number of faes that are sim-plies.Proposition 2.7 For n > d, the number of i-dimensional simplex faes ofthe multiplex Md;n is d+ 1i+ 1!�  d� 3i� 3!+ (n� d) " d� 1i !�  d� 3i� 2!# :Proof: Count the number of omplete subgraphs with vertex set X =fx`0 ; x`1 ; : : : ; x`ig, with `0 < `1 < � � � < `i.9



� For `0 = 0, the omplete subgraphs are obtained by hoosing i-elementsets from f1; 2; : : : ; dg not ontaining the pair f1; dg, sine fx1; xdg is the onlynonedge using these indies. There are �di���d�2i�2� suh omplete subgraphs.� For 1 � `0 � n�d�1, the omplete subgraphs are obtained by hoosingi-elements sets from f`0+1; `0+2; : : : ; `0+ d� 2; `0+ dg not ontaining thepair f`0 + 1; `0 + dg. There are �d�1i � � �d�3i�2� suh omplete subgraphs foreah `0, or (n� d� 1)[�d�1i �� �d�3i�2�℄ altogether.� For `0 = n � d, the omplete subgraphs are obtained by hoosing i-element sets from fn� d+ 1; n� d+ 2; : : : ; n� 2; ng. There are �d�1i � suhomplete subgraphs.� For n � d + 1 � `0 � n � i, the omplete subgraphs are obtained byhoosing i-element sets from f`0 + 1; `0 + 2; : : : ; n� 1; ng. There are �n�`0i �suh omplete subgraphs.Altogether the number of i-faes that are simplies is thus di!�  d� 2i� 2!+ (n� d� 1) " d� 1i !�  d� 3i� 2!#+  d� 1i !+ d�1Xj=i  ji!=  di!�  d� 2i� 2!+ (n� d) " d� 1i !�  d� 3i� 2!#+  d� 3i� 2!+ di+ 1!=  d+ 1i+ 1!�  d� 3i� 3!+ (n� d) " d� 1i !�  d� 3i� 2!# : 2Thus, the number of nonsimplex i-faes of Md;n is �d�3i�3�+ (n� d)�d�3i�2�.Bisztrizky desribes ertain quadrilateral two-faes of the multiplex.Proposition 2.8 ([5℄) For n > d � 3, let Md;n be the multiplex with or-dered list of verties x0, x1, . . . , xn. Then for eah i, 0 � i � n� d� 1,onvfxi; xi+1; xi+d; xi+d+1g is a quadrilateral two fae with diagonalsonvfxi; xi+d+1g and onvfxi+1; xi+dg.From the omment above, we know that Md;n has exatly n�d nonsim-plex two-faes. Bisztrizky's proposition aounts for all of them.The following propositions have analogues for ordinary polytopes, andthose are proved in setion 3. The odd-dimensional multiplexes are alsoordinary polytopes. The proofs of Propositions 3.10{3.12 arry through forthe even-dimensional multiplexes as well. The �rst is of speial interestbeause Kalai ([9℄) onjetures that all elementary d-polytopes are (d+ 1)-olorable. 10



Proposition 2.9 The hromati number of the graph of the multiplex Md;nis d, if n > d, and d+ 1, if n = d (in whih ase Md;n is the d-simplex).Proposition 2.10 For every n � d � 2, the multiplex Md;n has a Hamil-tonian yle.Proposition 2.11 For every n � d � 2, the multiplex Md;n has diameterdn=de.3 Ordinary polytopesGiven an ordered set V = fx0; x1; : : : ; xng, a subset Y � V is alled a Galesubset if between any two elements of V n Y there is an even number ofelements of Y . A polytope P with ordered vertex set V as above is a Galepolytope if the set of verties of eah faet is a Gale subset.De�nition 2 ([6℄) An ordinary polytope is a Gale polytope suh that eahfaet is a multiplex with the indued order on the verties.The de�nition of ordinary polytope is due to Bisztrizky. His hoie of theterm \ordinary" stemmed from a belief that they arise by hoosing vertieson a onvex ordinary spae urve, but this is not understood in dimensionshigher than three. See [4, 6℄.The ombinatoris of three-dimensional ordinary polytopes di�ers on-siderably from that of higher dimensional ordinary polytopes. In this paperwe onsider only ordinary polytopes of dimension at least four. Bisztrizky([6℄) de�nes these as above, and proves a number of results on their ombi-natoris. However, it is Dinh ([7℄) who proves their existene in Eulideanspae. We use the following theorems of Bisztrizky and Dinh.Theorem 3.1 ([6℄) Let P be an ordinary d-polytope with ordered vertiesx0, x1, . . . , xn. Assume n � d � 4. Then1. If d is even, then P is yli.2. If d is odd, then there exists an integer k (d � k � n) suh that theverties sharing an edge with x0 are exatly x1, x2, . . . , xd, and theverties sharing an edge with xn are exatly xn�1, xn�2, . . . , xn�k.The integer k guaranteed by this theorem is alled the harateristi of theordinary polytope. 11



Theorem 3.2 ([7℄) For every n � k � d = 2m + 1 � 5, there exists anordinary d-polytope with n+ 1 verties and harateristi k.Theorem 3.3 ([6℄) Given a triple of integers (n; k; d) with d odd and n �k � d � 5, all ordinary d-polytopes with n+ 1 verties and harateristi kare ombinatorially isomorphi.If P is an ordinary d-polytope with n + 1 verties and harateristik = n, then P is a yli polytope.If P is an ordinary d-polytope with harateristi k = d, then P is amultiplex.Write P d;k;n for the d-dimensional ordinary polytope with n+1 vertiesand harateristi k. The appendix gives the fae lattie of P 5;7;9; it wasomputed using the software pakage Polymake ([8℄).We do not have a formula for the omplete ag vetor of P d;k;n. However,Dinh ([7℄) omputes the f -vetor of P d;k;n, and here we ompute f02, andshow that ordinary polytopes, other than multiplexes, are not elementary.We use the following desription of the faets of P d;k;n, due to Dinh.Theorem 3.4 ([7℄) Let n, k, d and m be integers suh that n � k � d =2m + 1 � 5. Let P d;k;n be an ordinary d-polytope with harateristi k andordered verties x0, x1, . . . , xn. Then the faets of P d;k;n are onv(X),whereX = fxi; xi+1; : : : ; xi+2r�1g [ Y [ fxi+k; xi+k+1; : : : ; xi+k+2r�1g;where i 2 Z, 1 � r � m, Y is a paired (d � 2r � 1)-element subset offxi+2r+1; xi+2r+2; : : : ; xi+k�2g, and jXj � d. Here a paired subset is onewhose index set an be written as a disjoint union of pairs of onseutiveintegers.By de�nition eah of these faets is a multiplex with the indued vertexordering. Note that eah faet (a (d�1)-dimensional multiplex) has at mostd+ 2m� 1 = 2d� 2 verties. Thus, Proposition 2.4 generalizes toThe multiplex Md;n is a proper fae of some ordinary polytope ifand only if d � n � 2d� 1.The faets of ordinary polytopes are small, simplex-like polytopes. Theduals of ordinary polytopes have faets with many verties, however. Itan be shown that eah faet of the dual of an ordinary (2m+ 1)-polytopeof harateristi k has at least 3�k�m�3m�1 � verties. This is the number of12



those faets of P d;k;n that ontain the vertex x1 and �t the desription ofTheorem 3.4 with r = 1.The two-dimensional faes of P d;k;n are exatly the two-dimensional faesof its faets. From Proposition 2.8 and the omment following it, we knowall the nontriangular two-faes.Proposition 3.5 Let n, k, d and m be integers suh that n � k � d =2m + 1 � 5. Let P d;k;n be an ordinary d-polytope with harateristi kand ordered verties x0, x1, . . . , xn. The two-dimensional faes of P d;k;nthat are not triangles are exatly the sets onvfxi; xi+1; xi+k; xi+k+1g, for0 � i � n� k � 1.Proof: Dinh ([7℄) proves that these are indeed two-faes of P d;k;n, but doesnot show that they are the only nontriangular two-faes. Consider a faetF as given in Theorem 3.4, and apply Proposition 2.8 (and the subsequentomment) to give all its nontriangular two-faes. Renumber the verties ofthe faet F as z0, z1, . . . . Thus the d�2r�1 elements of Y are numbered z2rthrough zd�2, and fxi+k; xi+k+1; : : : ; xi+k+2r�1g = fzd�1; zd; : : : ; zd+2r�2g.The quadrilateral faes in F are of the form onvfzj ; zj+1; zj+d�1; zj+dg.Suh a quadrilateral ontains no element of Y , and is of the formonvfx`; x`+1; x`+k; x`+k+1g, with i � ` � i + 2r � 2. Considering all thefaets of P d;k;n, ` an range from 0 to n� k � 1. 2Dinh also omputes the f -vetors of ordinary polytopes. At the momentwe need only f1.Proposition 3.6 ([7℄) Let n, k, d and m be integers suh that n � k �d = 2m+ 1 � 5. Then f1(P d;k;n) = �k+12 �+ (n� k)(k � 1).Proposition 3.7 For every n � k � d = 2m+1 � 5, the ordinary polytopeP d;k;n is elementary if and only if k = d, in whih ase the ordinary polytopeis itself a multiplex.Proof: Proposition 3.5 implies that for the ordinary polytope P d;k;n,f02(P d;k;n) = 3f2(P d;k;n) + (n� k). Write� = f02(P d;k;n)� 3f2(P d;k;n) + f1(P d;k;n)� df0(P d;k;n) +  d+ 12 !:Then � = (n� k) + �k+12 �+ (n� k)(k� 1)� d(n+1) + �d+12 �. The ordinarypolytope P d;k;n is elementary if and only if � = 0. If k 6= d, then solving13



� = 0 for n gives n = (k+d�1)=2. But (k+d�1)=2 � (2k�1)=2 < k � n,so this is not possible. Thus � = 0 implies k = d, i.e., the ordinary polytopeis a multiplex. We have already seen that every multiplex is elementary. 2By Dinh's onstrution ([7℄) of ordinary polytopes, they an be realizedas rational polytopes. It would be interesting to ompute the tori h-vetorof ordinary polytopes. The quantities above are enough for the ase ofdimension �ve.Theorem 3.8 Let n � k � 5. The tori h-vetor of P 5;k;n is(1; n� 4; n� 32 !�  n� k + 12 !; n� 32 !�  n� k + 12 !; n� 4; 1):Among all 5-polytopes with h1 = n � 4 (that is, f0 = n + 1), the smallestpossible h2 is n � 4, and this is ahieved by the multiplex M5;n = P 5;5;n.Among all 5-polytopes with h1 = n � 4, the largest possible h2 is �n�32 �,and this is ahieved by the yli polytope P 5;n;n. Thus, the tori h-vetorsof P 5;k;n are niely distributed between the extreme tori h-vetors havingh1 = n� 4. The formula for h2 generalizes for ordinary polytopes of higher(odd) dimension: h2(P d;k;n) = �n�d+22 � � �n�k+12 �; note that �n�d+22 � is h2for the yli d-polytope with n+ 1 verties.The desription of the graph of a multiplex extends naturally to ordinarypolytopes.Theorem 3.9 For n � k � d = 2m + 1 � 5, let P d;k;n be the ordinarypolytope with vertex set fx0; x1; : : : ; xng. The edges of P d;k;n are� onvfxi; xjg, where 0 � i < j � n and j � i � k � 2� onvfxi; xi+kg, where 0 � i � n� k� onvfx0; xk�1g� onvfxn�k+1; xng.Proof: We onsider the pairs not listed in the statement of the theorem.These fall into two ategories. First are those pairs fxi; xjg with j�i � k+1.From Theorem 3.4 every faet ontaining xi and xj , with j � i � k + 1,also ontains the nonempty set of verties fxi+k; xi+k+1; : : : ; xj�1g. Thus,onvfxi; xjg is not a fae (edge) of P d;k;n. The number of these pairs isPn�k�1i=0 (n � k � i) = Pn�k`=1 ` = �n�k+12 �. The other pairs not listed are14



fxi; xjg with j � i = k � 1, i 6= 0, and j 6= n. For suh pairs onvfxi; xjg isnot an edge of P d;k;n, beause it is a diagonal of a two-dimensional fae asdesribed in Proposition 3.5. The number of these pairs is n�k. The numberof pairs listed in the statement of the theorem is thus �n+12 ���n�k+12 ��(n�k)= �k+12 �+(n�k)(k�1), whih is the number of edges of P d;k;n, as omputedby Dinh (Proposition 3.6). So all the listed pairs are edges of P d;k;n. 2Note that the graphs of ordinary polytopes are dimensionally ambiguous.For every odd d and d0 between 5 and k, the graphs of P d;k;n and P d0;k;n areisomorphi.Proposition 3.10 For every n � k � d = 2m + 1 � 5, the hromatinumber of the graph of the ordinary polytope P d;k;n is k, if n > k, and k+1,if n = k (in whih ase P d;k;n is a yli polytope).Proof: If n = k, then P = P d;k;n is a yli polytope, and the graph of P isthe omplete graph on k + 1 verties, so its hromati number is k + 1. Soassume n > k. Let G be the graph of P , with vertex set fx0; x1; : : : ; xng.Assign olors from the set f0; 1; : : : ; k � 1g to the verties of G as follows:�(xi) = ( k � 1 if i = 0 or i = ni mod k � 1 if 1 � i � n� 1Sine x0 and xn are not adjaent in G, every edge ontaining x0 or xn isassigned two di�erent olors. If i < j and j � i � k � 2, or j � i = k, thenj 6� i (mod k � 1), so �(xj) 6= �(xi). Thus adjaent verties have di�erentolors, so � gives a proper k-oloring of G. Now G ontains a ompletesubgraph on the vertex set fx0; x1; : : : ; xk�1g, so the hromati number ofG is k. 2Proposition 3.11 For every n � k � d = 2m+1 � 5, the ordinary polytopeP d;k;n has a Hamiltonian yle.Proof: If n is odd, the vertex sequene, x0, x2, x4, . . . , xn�1, xn, xn�2,xn�4, . . . , x3, x1, x0, gives a Hamiltonian yle. If n is even, the vertexsequene, x0, x2, x4, . . . , xn�2, xn, xn�1, xn�3, . . . , x3, x1, x0, gives aHamiltonian yle. 2Proposition 3.12 For every n � k � d = 2m+1 � 5, the ordinary polytopeP d;k;n has diameter dn=ke. 15



Proof: For i < j, the verties xi and xj are adjaent if j � i � k � 2 orif j � i = k. In addition x0 and xk�1 are adjaent, and xn and xn�k+1 areadjaent. So usually xi, xi+k, xi+2k, . . . , xi+tk, xj , with t = bj � i � 1=k,gives an xi{xj path of length t+1 � dn=ke. This is valid as long as j�i 6� �1(mod k). If j � i � �1 (mod k), then xi, xi+k, xi+2k, . . . , xi+tk, xi+tk+1,xj , with t = b(j � i)=k = (j � i� k + 1)=k, gives a path of length t+ 2. Ifj� i < n�1, then t+2 = (j� i+k+1)=k � dn=ke. The remaining ases arethe paths x0, xk�1, x2k�1, . . . , xn�1 and x1, xk+1, x2k+1, . . . , xn+1�k, xn,if n � 0 (mod k), and x0, xk, x2k, . . . , xtk, xn, with t = bn=k, if n � �1(mod k). These are all of length dn=ke. Clearly, the x0{xn path given is theshortest x0{xn path. So the diameter is exatly dn=ke. 2By Theorem 3.3 the lass of ordinary polytopes inludes the yli poly-topes of odd dimension. Cyli polytopes have played an important rolein the ombinatorial study of simpliial polytopes (e.g., in [10℄), and morereently, in the study of triangulations of polytopes (e.g., in [11℄). Cylipolytopes are neighborly, that is, every bd=2-element set of verties is thevertex set of a fae of the polytope. In partiular, the graph of a neighborlyd-polytope for d � 4 is the omplete graph. Thus no ordinary polytopesother than the yli polytopes are neighborly. A generalization of neigh-borliness is studied in [1℄. A polytope is weakly neighborly if every set of k+1verties is ontained in a fae of dimension at most 2k, for all k. It is naturalto ask, then, if ordinary polytopes are weakly neighborly. The answer is no,almost always. If n � k + 2, then x0 and xn are not on a ommon two-faeof the ordinary polytope P d;k;n. For n = k + 1, k > d � 5 (d odd), P d;k;n isnot weakly neighborly; for example, fx1; x3; x5g is not ontained in a faetof P 5;6;7. If n = d + 2, then x0 and xn are not on a ommon two-fae ofthe multiplexMd;n. The only weakly neighborly ordinary polytopes are theyli polytopes and the multiplexesMd;d+1, whih are (d�2)-fold pyramidsover quadrilaterals. Theorem 2.6 says that every omplete subgraph of thegraph of a multiplex is the graph of a fae of the multiplex. This fails ingeneral for ordinary polytopes.We turn now to the f -vetors of ordinary polytopes. These are omputedby Dinh.Theorem 3.13 ([7℄) Let n � k � d = 2m + 1 � 5. The number ofi-dimensional faes of the ordinary polytope P d;k;n isfi(P d;k;n) = �i(d; k) + (n� k)i(d; k);where �i(d; k) is the number of i-faes of the yli d-polytope with k + 116



verties,�i = ( �k+1i+1� for 0 � i � m� 1Pmj=0 h� jd�1�i�+ � d�jd�1�i�i �k�d+jj � for m � i � d� 1 ;and i(d; k) = fi(P d;k;n+1)� fi(P d;k;n) is given by1. i =  k � 1i !, for 1 � i < m,2. m =  k � 1m !�  k � 2�mm !,3. i = bi=2Xj=i�m(2N(k � 1; j; i) �N(k � 2; j; i)) � b(i�1)=2Xj=i�m N(k � 3; j; i � 1)� b(i�2)=2Xj=i�m�1N(k � 3; j; i � 2)� i�mXr=0 N(k � 3� 2r; i �m� r; i� 2r),for m < i < 2m = d� 1, and4. d�1 = 2m =  k � 2�mm� 1 !.Here N(s; t; u) =  u� tt ! s� u+ tu� t !+  u� 1� tt ! s� u+ tu� 1� t!:Thus, for �xed d and k, the f -vetors of the ordinary polytopes P d;k;nlie on a line.Conjeture 3.14 Let d be an odd integer, d � 5. The set of f -vetors of allordinary d-polytopes spans the Euler hyperplane (given by Pd�1i=0 fi = 2). Aspanning set onsists of the ordinary polytopes P d;d+bi=2;d+i, for 1 � i � d.The onjeture has been veri�ed on omputer for odd d, 5 � d � 37.The ag vetors of ordinary polytopes satisfy many linear relations thatdo not hold for all polytopes, however. In partiular, the self-duality ofmultiplexes gives the following equalities. Let S = fs1; s2; : : : ; sr�1; srg,and S0 = fsr � 1 � s1; sr � 1 � s2; : : : ; sr � 1 � sr�1; srg. Then for everyordinary polytope P of odd dimension greater than sr, fS(P ) = fS0(P ). Forexample, for ordinary 5-dimensional polytopes, f03 = f23, a relation thatfails for arbitrary 5-polytopes. In fat, in dimension �ve, the ag vetors ofordinary polytopes depend linearly on the f -vetors.17



AppendixHere is the fae lattie of the ordinary polytope P 5;7;9. Faes are listed bytheir sets of verties, from the vertex set f0; 1; : : : ; 9g. The f -vetor of thispolytope is f(P 5;7;9) = (10; 40; 76; 70; 26).Faets:01234, 01245, 01256, 02345, 02356, 02367, 03456, 03467, 04567, 23459,23569, 23679, 34569, 34679, 34789, 45679, 45789, 56789, 013478,014578, 015678, 123489, 124589, 125689, 0123789, 01267893-dimensional faes:0123, 0124, 0125, 0126, 0134, 0145, 0156, 0234, 0235, 0236, 0237, 0245,0256, 0267, 0345, 0346, 0347, 0356, 0367, 0456, 0457, 0467, 0567, 1234,1245, 1256, 1348, 1458, 1568, 2345, 2349, 2356, 2359, 2367, 2369, 2379,2459, 2569, 2679, 3456, 3459, 3467, 3469, 3478, 3479, 3489, 3569, 3679,3789, 4567, 4569, 4578, 4579, 4589, 4679, 4789, 5678, 5679, 5689, 5789,6789, 01378, 01478, 01578, 01678, 12389, 12489, 12589, 12689, 0127892-dimensional faes:012, 013, 014, 015, 016, 023, 024, 025, 026, 027, 034, 035, 036, 037,045, 046, 047, 056, 057, 067, 123, 124, 125, 126, 134, 138, 145, 148,156, 158, 168, 234, 235, 236, 237, 239, 245, 249, 256, 259, 267, 269,279, 345, 346, 347, 348, 349, 356, 359, 367, 369, 378, 379, 389, 456,457, 458, 459, 467, 469, 478, 479, 489, 567, 568, 569, 578, 579, 589,678, 679, 689, 789, 0178, 1289Edges:01, 02, 03, 04, 05, 06, 07, 12, 13, 14, 15, 16, 18, 23, 24, 25, 26, 27,29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68,69, 78, 79, 89Referenes[1℄ Margaret M. Bayer. Equideomposable and weakly neighborly poly-topes. Israel J. Math., 81:301{320, 1993.18
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