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Abstract

Ordinary polytopes were introduced by Bisztriczky as a (nonsimpli-
cial) generalization of cyclic polytopes. We show that the colex order
of facets of the ordinary polytope is a shelling order. This shelling
shares many nice properties with the shellings of simplicial polytopes.
We also give a shallow triangulation of the ordinary polytope, and
show how the shelling and the triangulation are used to compute the
toric h-vector of the ordinary polytope. As one consequence, we get
that the contribution from each shelling component to the h-vector is
nonnegative. Another consequence is a combinatorial proof that the
entries of the h-vector of any ordinary polytope are simple sums of
binomial coefficients.

1 Introduction

1.1 Motivation

This paper has a couple of main motivations. The first comes from the
study of toric h-vectors of convex polytopes. The h-vector played a crucial
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role in the characterization of face vectors of simplicial polytopes [5, 14, 15].
In the simplicial case, the h-vector is linearly equivalent to the face vector,
and has a combinatorial interpretation in a shelling of the polytope. The
h-vector of a simplicial polytope is also the sequence of Betti numbers of
an associated toric variety. In this context it generalizes to nonsimplicial
polytopes. However, for nonsimplicial polytopes, we do not have a good
combinatorial understanding of the entries of the h-vector. (Chan [10] gives
a combinatorial interpretation for the h-vector of cubical polytopes.)

The definition of the (toric) h-vector for general polytopes (and even
more generally, for Eulerian posets) first appeared in [16]. Already there
Stanley raised the issue of computing the h-vector from a shelling of the
polytope. Associated with any shelling, F1, F2, . . . , Fn, of a polytope P is
a partition of the faces of P into the sets Gj of faces of Fj not in ∪i<jFi.
The h-vector can be decomposed into contributions from each set Gj . When
P is simplicial, the set Gj is a single interval [Gj , Fj ] in the face lattice of
P , and the contribution to the h-vector is a single 1 in position |Gj |. For
nonsimplicial polytopes, the set Gj is not so simple. It is not clear whether
the contribution to the h-vector from Gj must be nonnegative, and, if it
is, whether it counts something natural. (Tom Braden [8] has announced
a positive answer to this question, based on [1, 12].) Another issue is the
relation of the h-vector of a polytope P to the h-vector of a triangulation of
P . This is addressed in [2, 17].

A problem in studying nonsimplicial polytopes is the difficulty of gener-
ating examples with a broad range of combinatorial types. Bisztriczky [7]
discovered the fascinating “ordinary” polytopes, a class of generally non-
simplicial polytopes, which includes as its simplicial members the cyclic
polytopes. These polytopes have been studied further in [3, 4, 9]. In par-
ticular, in [3], it is shown that ordinary polytopes have surprisingly nice
h-vectors, namely, the h-vector is the sum of the h-vector of a cyclic poly-
tope and the shifted h-vector of a lower-dimensional cyclic polytope. These
h-vectors were calculated from the flag vectors, and the calculation did not
give a combinatorial explanation for the nice form that came out. So we
were motivated to find a combinatorial interpretation for these h-vectors,
most likely through shellings or triangulations of the polytopes.

This paper is organized as follows. In the second part of this introduction
we give the main definitions. The brief Section 2 warms up with the natural
triangulation of the multiplex. Section 3 is devoted to showing that the
colex order of facets is a shelling of the ordinary polytope. The proof, while
laborious, is constructive, explicitly describing the minimal new faces of
the polytope as each facet is shelled on. We then turn in Section 4 to h-
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vectors of multiplicial polytopes in general, and of the ordinary polytope
in particular. Here a “fake simplicial h-vector” arises in the shelling of the
ordinary polytope. In Section 5, the triangulation of the multiplex is used
to triangulate the boundary of the ordinary polytope. This triangulation
is shown to have a shelling compatible with the shelling of Section 3. The
shelling and triangulation together explain combinatorially the h-vector of
the ordinary polytope.

Finally, a comment about the title of this paper. Bisztriczky named
these polytopes “ordinary polytopes” to invoke the idea of ordinary curves.
The name is, of course, a bit misleading, as it is applied to a truly extraor-
dinary class of polytopes. We feel that these polytopes are extraordinary
because of their special structure, but we hope that they will also turn out
to be extraordinary for their usefulness in understanding general convex
polytopes.

1.2 Definitions

For common polytope terminology, refer to [18].
The toric h-vector was defined by Stanley for Eulerian posets, including

the face lattices of convex polytopes.

Definition 1 ([16]) Let P be a (d− 1)-dimensional polytopal sphere. The
h-vector and g-vector of P are encoded as polynomials: h(P, x) =

∑d
i=0 hix

d−i

and g(P, x) =
∑⌊d/2⌋

i=0 gix
i, with the relations g0 = h0 and gi = hi − hi−1 for

1 ≤ i ≤ d/2. Then the h-polynomial and g-polynomial are defined by the
recursion

1. g(∅, x) = h(∅, x) = 1, and

2. h(P, x) =
∑

G face of P
G6=P

g(G,x)(x − 1)d−1−dim G.

It is easy to see that the h-vector depends linearly on the flag vector.
In the case of simplicial polytopes, the formulas reduce to the well-known
transformation between f -vector and h-vector.

Definition 2 ([18]) Let C be a pure d-dimensional polytopal complex. If
d = 0, then a shelling of C is any ordering of the points of C. If d > 0, then
a shelling of C is a linear ordering F1, F2, . . . , Fs of the facets of C such
that for 2 ≤ j ≤ s, Fj ∩ (∪i<jFi) is nonempty and is the union of ridges
((d − 1)-dimensional faces) of C that form the initial segment of a shelling
of Fj .
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Definition 3 ([2]) A triangulation ∆ of a polytopal complex C is shallow
if and only if every face σ of ∆ is contained in a face of C of dimension at
most 2 dim σ.

Theorem 1.1 ([2]) If ∆ is a simplicial sphere forming a shallow triangu-
lation of the boundary of the convex d-polytope P , then h(∆, x) = h(P, x).

Note: in [2] Theorem 4 gives h(P, x) = h(∆, x) for a shallow subdivision ∆
of the solid polytope P . The proof goes through for shallow subdivisions of
the boundary, because it is based on the uniqueness of low-degree acceptable
functions [16], which holds for lower Eulerian posets.

Definition 4 ([6]) A d-dimensional multiplex is a polytope with an ordered
list of vertices, x0, x1, . . . , xn, with facets F0, F1, . . . , Fn given by

Fi = conv{xi−d+1, xi−d+2, . . . , xi−1, xi+1, xi+2, . . . , xi+d−1},

with the conventions that xi = x0 if i < 0, and xi = xn if i > n.

Given an ordered set V = {x0, x1, . . . , xn}, a subset Y ⊆ V is called a
Gale subset if between any two elements of V \Y there is an even number of
elements of Y . A polytope P with ordered vertex set V is a Gale polytope
if the set of vertices of each facet is a Gale subset.

Definition 5 ([7]) An ordinary polytope is a Gale polytope such that each
facet is a multiplex with the induced order on the vertices.

Cyclic polytopes can be characterized as the simplicial Gale polytopes. Thus
the only simplicial ordinary polytopes are cyclics. In fact, these are the
only ordinary polytopes in even dimensions. However, the odd-dimensional,
nonsimplicial ordinary polytopes are quite interesting.

We use the following notational conventions. Vertices are generally de-
noted by integers i rather than by xi. Where it does not cause confusion,
a face of a polytope or a triangulation is identified with its vertex set, and
max F denotes the vertex of maximum index of the face F . Interval notation
is used to denote sets of consecutive integers, [a, b] = {a, a + 1, . . . , b− 1, b}.
If X is a set of integers and c is an integer, write X + c = {x + c : x ∈ X}.

2 Triangulating the multiplex

Multiplexes have minimal triangulations that are particularly easy to de-
scribe.
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Theorem 2.1 Let Md,n be a multiplex with ordered vertices 0, 1, . . . , n.
For 0 ≤ i ≤ n − d, let Ti be the convex hull of [i, i + d]. Then Md,n has a
shallow triangulation as the union of the n − d + 1 d-simplices Ti.

Proof: The proof is by induction on n. For n = d, the multiplex Md,d is
the simplex T0 itself. Assume Md,n has a triangulation into simplices Ti,
0 ≤ i ≤ n − d. Consider the multiplex Md,n+1 with ordered vertices 0, 1,
. . . , n + 1. Then Md,n+1 = conv(Md,n ∪ {n + 1}), where n + 1 is a point
beyond facet Fn of Md,n, beneath the facets Fi for 0 ≤ i ≤ n − d + 1, and
in the affine hulls of the facets Fi for n − d + 2 ≤ i ≤ n − 1. (See [6].)
Thus, Md,n+1 is the union of Md,n and conv(Fn ∪ {n + 1}) = Tn+1−d, and
Md,n ∩ Tn+1−d = Fn. By the induction assumption, the simplices Ti, with
0 ≤ i ≤ n + 1 − d, form a triangulation of Md,n+1.

The dual graph of the triangulation is simply a path. (The dual graph
is the graph having a vertex for each d-simplex, and an edge between two
vertices if the corresponding d-simplices share a (d− 1)-face.) The ordering
T0, T1, T2, . . . , Tn−d is a shelling of the simplicial complex that triangulates
Md,n. So the h-vector of the triangulation is (1, n − d, 0, 0, . . .). This is the
same as the g-vector of the boundary of the multiplex, which is the h-vector
of the solid multiplex. So by [2], the triangulation is shallow. 2

Note, however, that for n ≥ d + 2, Md,n is not weakly neighborly (as
observed in [4]). This means that it has nonshallow triangulations. This
is easy to see because the vertices 0 and n are not contained in a common
proper face of Md,n.

Consider the induced triangulation of the boundary of Md,n. For no-
tational purposes we consider T0 and Tn separately. All facets of T0 ex-
cept [1, d] are boundary facets of Md,n. Write T0\0 = [0, d − 1] = F0, and
T0\j = [0, d] \ {j} for 1 ≤ j ≤ d− 1. Write Tn−d\n = [n− d+ 1, n] = Fn, and
Tn\j = [n − d, n] \ {j} for n − d + 1 ≤ j ≤ n − 1. For 1 ≤ i ≤ n − d − 1, the
facets of Ti are Ti\j = [i, i+d]\{j}. Two of these facets (j = i and j = i+d)

intersect the interior of Md,n. For 1 ≤ j ≤ n−1, the facet Fj is triangulated
by Ti\j for j− d+1 ≤ i ≤ j− 1 (and 0 ≤ i ≤ n− d). The facet order F0, F1,

. . . , Fn, is a shelling of the multiplex Md,n. The (d−1)-simplices Ti\j in the
order T0\0, T0\1, T0\2, T1\2, . . . , Tn−d−1\n−2, Tn−d\n−2, Tn−d\n−1, Tn−d+1\n

(increasing order of j and, for each j, increasing order of i), form a shelling
of the triangulated boundary of Md,n.
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3 Shelling the ordinary polytope

Shelling is used to calculate the h-vector, and hence the f -vector of simplicial
complexes (in particular, the boundaries of simplicial polytopes). This is
possible because (1) the h-vector has a simple expression in terms of the
f -vector and vice versa; (2) in a shelling of a simplicial complex, among the
faces added to the subcomplex as a new facet is shelled on, there is a unique
minimal face; (3) the interval from this minimal new face to the facet is a
Boolean algebra; and (4) the numbers of new faces given by (3) match the
coefficients in the f -vector/h-vector formula. These conditions all fail for
shellings of arbitrary polytopes. However, some hold for certain shellings of
ordinary polytopes.

As mentioned earlier, noncyclic ordinary polytopes exist only in odd
dimensions. Furthermore, three-dimensional ordinary polytopes are quite
different combinatorially from those in higher dimensions. We thus restrict
our attention to ordinary polytopes of odd dimension at least five. It turns
out that these are classified by the vertex figure of the first vertex.

Theorem 3.1 ([7, 9]) For each choice of integers n ≥ k ≥ d = 2m+1 ≥ 5,
there is a unique combinatorial type of ordinary polytope P = P d,k,n such
that the dimension of P is d, P has n + 1 vertices, and the first vertex of
P is on exactly k edges. The vertex figure of the first vertex of P d,k,n is the
cyclic (d − 1)-polytope with k vertices.

We use the following description of the facets of P d,k,n by Dinh. For any
subset X ⊆ Z, let retn(X) (the “retraction” of X) be the set obtained from
X by replacing every negative element by 0 and replacing every element
greater than n by n.

Theorem 3.2 ([9]) Let Xn be the collection of sets

X = [i, i + 2r − 1] ∪ Y ∪ [i + k, i + k + 2r − 1], (1)

where i ∈ Z, 1 ≤ r ≤ m, Y is a paired (d − 2r − 1)-element subset of
[i + 2r + 1, i + k − 2], and |retn(X)| ≥ d. The set of facets of P d,k,n is
F(P d,k,n) = {retn(X) : X ∈ Xn},

It is easy to check that when n = k, |retn(X)| = d for all X ∈ Xn, and that
retn(Xn) is the set of d-element Gale subsets of [0, k], that is, the facets of
the cyclic polytope P d,k,k.

Note that Xn−1 ⊆ Xn. We wish to describe F(P d,k,n) in terms of
F(P d,k,n−1); for this we need the following shift operations. If F = retn−1(X) ∈
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F(P d,k,n−1), let the right-shift of F be rsh(F ) = retn(X + 1). Note that
rsh(F ) may or may not contain 0. In either case, rsh(F ) ∩ [1, n] = F + 1,
so |rsh(F )| ≥ |F | ≥ d, If F = retn(X) ∈ F(P d,k,n), let the left-shift of F be
lsh(F ) = retn−1(X − 1). Note that lsh(F ) \ {0} = (F − 1) ∩ [1, n]; lsh(F )
contains 0 if either 0 or 1 is in F .

Lemma 3.3 If n ≥ k+1 and F ∈ F(P d,k,n) with maxF ≥ k, then lsh(F) ∈
F(Pd,k,n−1).

Proof: Let F = retn(X), with X = [i, i+2r− 1]∪Y ∪ [i+ k, i+ k +2r− 1].
Then X − 1 also has the form of equation (1) (for i − 1). The set lsh(F ) is
the vertex set of a facet of P d,k,n−1 as long as |lsh(F )| ≥ d. We check this
in three cases.
Case 1. If k ≤ i+ k + 2r− 1 ≤ n, then i+ 2r − 1 ≥ 0, so Y ⊆ [i+ 2r + 1, i+
k − 2] ⊆ [2, i + k − 2]. Then

lsh(F ) ⊇ max{i + 2r − 2, 0} ∪ (Y − 1) ∪ [i + k − 1, i + k + 2r − 2],

so |lsh(F )| ≥ 1 + (d − 2r − 1) + 2r = d.
Case 2. If i+k ≥ n, then i ≥ n−k ≥ 1. Also, |F | ≥ d implies maxY ≤ n−1.
So

lsh(F ) = [i − 1, i + 2r − 2] ∪ (Y − 1) ∪ {n − 1},

so |lsh(F )| = 2r + (d − 2r − 1) + 1 = d.
Case 3. If i + k < n < i + k + 2r − 1, then i + 2r − 1 ≥ n − k ≥ 1, and

F = [max{0, i}, i + 2r − 1] ∪ Y ∪ [i + k, n],

so

|F | = (i + 2r − max{0, i}) + (d − 2r − 1) + (n − i − k + 1)

= d + n − k − max{i, 0} ≥ d + 1.

Then |lsh(F )| ≥ |F | − 1 ≥ d.
Thus, lsh(F ) is a facet of P d,k,n−1. 2

Identify each facet of the ordinary polytope P d,k,n with its ordered list
of vertices. Then order the facets of P d,k,n in colex order. This means, if
F = i1i2 . . . ip and G = j1j2 . . . jq, then F ≺c G if and only if for some t ≥ 0,
ip−t < jq−t while for 0 ≤ s < t, ip−s = jq−s.

Lemma 3.4 If n ≥ k+1 and F1 and F2 are facets of P d,k,n with maxFi ≥ k,
then F1 ≺c F2 implies lsh(F1) ≺c lsh(F2).
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Proof: Suppose F1 ≺c F2, and let q be the maximum vertex in F2 not in
F1. Then lsh(F1) ≺c lsh(F2) as long as q ≥ 2, for in that case q − 1 ∈
lsh(F2) \ lsh(F1), while [q, n − 1] ∩ lsh(F1) = [q, n − 1] ∩ lsh(F2). (If q = 1,
then q shifts to 0 in lsh(F2), but 0 may be in lsh(F1) as a shift of a smaller
element.) So we prove q ≥ 2. Write

F2 = retn([i, i + 2r − 1] ∪ Y ∪ [i + k, i + k + 2r − 1])

and
F1 = retn([i′, i′ + 2r′ − 1] ∪ Y ′ ∪ [i′ + k, i′ + k + 2r′ − 1]).

Since max F2 ≥ k, i + 2r − 1 ≥ 0, so Y ∪ [i + k, i + k + 2r − 1] ⊆
[2, n], Thus, if q ∈ Y ∪ [i + k, i + k + 2r − 1], then q ≥ 2. Otherwise
Y ∪ [i + k, i + k + 2r − 1]) = Y ′ ∪ [i′ + k, i′ + k + 2r′ − 1]), but Y 6= Y ′. This
can only happen when Y ∪ [i + k, i + k + 2r − 1]) is an interval; in this case
i+k+2r−1 ≥ n+1. Then q = i+2r−1 = (i+k+2r−1)−k ≥ n+1−k ≥ 2.
2

Proposition 3.5 Let n ≥ k + 1. The facets of P d,k,n are

{F : F ∈ F(P d,k,n−1) and maxF ≤ n − 2}

∪ {rsh(F ) : F ∈ F(P d,k,n−1) and maxF ≥ n − 2}.

Proof: If max X ≤ n − 2, then retn(X) = retn−1(X); in this case, let-
ting F = retn(X), F ∈ F(P d,k,n−1) if and only if F ∈ F(P d,k,n). If
F ∈ F(P d,k,n−1) with max F ≥ n − 2, then rsh(F ) ∈ F(P d,k,n) with
max rsh(F ) ≥ n − 1. Now suppose that G = retn(X) ∈ F(P d,k,n) with
max G ≥ n − 1. Let F = lsh(G) = retn−1(X − 1) ∈ F(P d,k,n−1); then
max F ≥ n − 2. By definition, rsh(F ) = retn((X − 1) + 1) = retn(X) = G.
2

Theorem 3.6 Let F1, F2, . . . , Fv be the facets of P d,k,n in colex order.
Then

1. F1, F2, . . . , Fv is a shelling of P d,k,n.

2. For each j there is a unique minimal face Gj of Fj not contained in

∪j−1
i=1Fi.

3. For each j, 2 ≤ j ≤ v − 1, Gj contains the vertex of Fj of maximum
index, and is contained in the d − 1 highest vertices of Fj .
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4. For each j, the interval [Gj , Fj ] is a Boolean lattice.

Note that this theorem is not saying that the faces of P d,k,n in the interval
[Gj , Fj ] are all simplices.
Proof: We construct explicitly the faces Gj in terms of Fj . The reader may
wish to refer to the example that follows the proof.

Cyclic polytopes. We start with the cyclic polytopes. (For the cyclics,
the theorem is generally known, or at least a shorter proof based on [5] is
possible, but we will need the description of the faces Gj later.)

Let F1, F2, . . . , Fv be the facets, in colex order, of P d,k,k, the cyclic
d-polytope with vertex set [0, k]. Each facet Fj can be written as Fj =
I0
j ∪ I1

j ∪ I2
j ∪ · · · ∪ Ip

j ∪ Ik
j , where I0

j is the interval of Fj containing 0,

if 0 ∈ Fj , and I0
j = ∅ otherwise; Ik

j is the interval of Fj containing k, if

k ∈ Fj , and Ik
j = ∅ otherwise; and the Iℓ

j are the other (even) intervals of

Fj with the elements of Iℓ
j preceding the elements of Iℓ+1

j . (For example, in

P 7,9,9, F6 = {0, 1, 2, 4, 5, 7, 8}, I0
6 = {0, 1, 2}, I1

6 = {4, 5}, I2
6 = {7, 8}, and

I9
6 = ∅.) For the interval [a, b], write E([a, b]) for the integers in the even

positions in the interval, that is, E([a, b]) = [a, b]∩ {a + 2i + 1 : i ∈ N}. Let
Gj = ∪p

ℓ=1E(Iℓ
j ) ∪ Ik

j . Since I0
j = Fj if and only if j = 1, G1 = ∅, and for

all j > 1, Gj contains the maximum vertex of Fj . Since Fj is a simplex,
[Gj , Fj ] is a Boolean lattice.

To show that F1, F2, . . . , Fv is a shelling of P d,k,k we show that Gj is
not in a facet before Fj and that every ridge of P d,k,k in Fj that does not
contain Gj is contained in a previous facet. For j > 0 the face Gj consists of
the right end-set Ik

j (if nonempty) and the set ∪p
j=1E(Iℓ

j ) of singletons. Note
that Gj satisfies condition 3 of the theorem (which here just says that the
lowest vertex of Fj is not in Gj), unless j = v, in which case Gv = Fv. Any
facet F of P d,k,k containing Gj must satisfy Gale’s evenness condition and
therefore must contain an integer adjacent to each element of ∪p

j=1E(Iℓ
j ).

If any element of the form max Iℓ
j + 1 is in F , then F occurs after Fj in

colex order. This implies that any Fi previous to Fj and containing Gj also
contains ∪p

ℓ=1I
ℓ
j ∪ Ik

j . But Fj is the first facet in colex order that contains

∪p
ℓ=1I

ℓ
j ∪ Ik

j . So Gj is not in a facet before Fj .
Now let g ∈ Gj ; we wish to show that Fj \ {g} is in a previous facet. If

g ∈ E(Iℓ
j ) for ℓ > 0, let F = Fj \ {g} ∪ {min Iℓ

j − 1}. Then F satisfies Gale’s

evenness condition and is a facet before Fj . Otherwise g ∈ Ik
j \ E(Ik

j ); in
this case let F = Fj \ {g} ∪ {max I0

j + 1} (where we let max I0
j + 1 = 0 if

I0
j = ∅). Again F satisfies Gale’s evenness condition and is a facet before

Fj .
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Thus the colex order of facets is a shelling order for the cyclic polytope
P d,k,k, and we have an explicit description for the minimal new face Gj as
Fj is shelled on.

General ordinary. Now we prove the theorem for general P d,k,n by
induction on n ≥ k, for fixed k. Among the facets of P d,k,n, first in colex
order are those with maximum vertex at most n − 2. These are also the
first facets in colex order of P d,k,n−1. Thus the induction hypothesis gives
us that this initial segment is a partial shelling of P d,k,n, and that assertions
2–4 hold for these facets.

Later facets. It remains to consider the facets of P d,k,n ending in n−1
or n. These facets come from shifting facets of P d,k,n−1 ending in n − 2 or
n − 1. Our strategy here will be to prove statement 2 of the theorem for
these facets. The intersection of Fj with ∪j−1

i=1Fi is then the antistar of Gj

in Fj , and so it is the union of (d − 2)-faces that form an initial segment of
a shelling of Fj . This will prove that the colex order F1, F2, . . . , Fv is a
shelling of P d,k,n.

Note that there is nothing to show for the last facet of P d,k,n in colex
order. It is Fv = [n − d + 1, n], and is the only facet (other than the first)
whose vertex set forms a single interval. Assume from now on that j is fixed,
with j ≤ v − 1. Later we will describe recursively the minimal new face Gj

as Fj is shelled on. It will always be the case that maxFj ∈ Gj . We will
prove that Gj is truly a new face (is not contained in a previous facet), and
that every ridge not containing all of Gj is contained in a previous facet.

Ridges not containing the last vertex. It is convenient to start by
showing that every ridge of P d,k,n contained in Fj and not containing maxFj

is contained in an earlier facet. This case does not use the recursion needed
for the other parts of the proof. Write

X = [i, i + 2r − 1] ∪ Y ∪ [i + k, i + k + 2r − 1]

and Fj = retn(X) = {z1, z2, . . . , zp} with 0 ≤ z1 < z2 < · · · < zp ≤ n. The
facet Fj is a (d − 1)-multiplex, so its facets are of the form

Fj(ẑt) = {zℓ : 1 ≤ ℓ ≤ p, 0 < |ℓ − t| ≤ d − 2}

for 2 ≤ t ≤ p−1, Fj(ẑ1) = {z1, z2, . . . , zd−1}, and Fj(ẑp) = {zp−d+2, . . . , zp−1, zp}.
If Fj(ẑt) does not contain maxFj = zp, then t ≤ p − d + 1 and this implies
i ≤ zt ≤ i + 2r − 1. Consider such a zt.

The first ridge. For t = 1, there are three cases to consider.
Case 1. Suppose z1 ≥ 1. Then Fj(ẑ1) = [i, i + 2r − 1] ∪ Y . Let I be the
right-most interval of Fj(ẑ1). Let Z = (I − k) ∪ Fj(ẑ1), and F = retn(Z).
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Since i ≥ 1 and maxFj(ẑ1) ≤ i + k − 2, the interval I − k contributes at
least one new element to F , so |F | ≥ d.
Case 2. Suppose z1 = 0 and the right-most interval of Fj(ẑ1) is odd. In
this case the left-most interval of Fj must also be odd, so i < 0, and Fj(ẑ1)
contains i + k but not i + k − 1. Let F = Fj(ẑ1) ∪ {i + k − 1}.
Case 3. Suppose z1 = 0 and the right-most interval of Fj(ẑ1) is even (and
then so is the left-most interval). Then Fj(ẑ1) = [0, i+2r−1]∪Y ∪[i+k, k−1]
(where the last interval is empty if i = 0). Let

F = Fj(ẑ1) ∪ {i + 2r} = {0} ∪ [1, i + 2r] ∪ Y ∪ [i + k, k − 1].

(When i = 0 and r = (d − 1)/2, this gives F = [0, d − 1].) In all cases F is
a facet of P d,k,n containing Fj(ẑ1). It does not contain maxFj , so F ≺c Fj .

Deleting a later vertex. Now assume 2 ≤ t ≤ p − d + 1; then zt ≥
max{i + 1, 1}. Here

Fj(ẑt) = [max{i, 0}, zt − 1] ∪ [zt+1, i + 2r − 1] ∪ Y ∪ [i + k, zt − 1 + k],

and |Fj(ẑt)| = zt − max{i, 0} + d − 2 ≥ d − 1. Also note that zt − 1 + k is
the (d − 2)nd element of {z1, z2, . . . , zp} after zt, so zt − 1 + k = zt+d−2 <
zp = max Fj .
Case 1. If zt − i is even, let F = Fj(ẑt)∪{i+2r}. Then F = retn(Z), where

Z = [i, zt − 1] ∪ [zt + 1, i + 2r] ∪ Y ∪ [i + k, zt − 1 + k],

and |F | ≥ d.
Case 2. If zt−i is odd and max([i, i+2r−1]∪Y ) < i+k−2, let F = retn(Z),
where

Z = [i − 1, zt − 1] ∪ [zt + 1, i + 2r − 1] ∪ Y ∪ [i + k − 1, zt − 1 + k].

Then F ⊇ Fj(ẑt) ∪ {i + k − 1}, so |F | ≥ d.
Case 3. Finally, suppose zt− i is odd and maxY = i+k−2. Let [q, i+k−2]
be the right-most interval of Y , and let F = retn(Z), where

Z = [q − k, zt − 1] ∪ [zt + 1, i + 2r − 1] ∪ (Y \ [q, i + k − 2]) ∪ [q, zt − 1 + k].

Then F ⊇ Fj(ẑt) ∪ {i + k − 1}, so |F | ≥ d.
In all cases, F is a facet of P d,k,n containing Fj(ẑt) and maxFj 6∈ F , so

F occurs before Fj in colex order.
Determining the minimal new face. We now describe the faces Gj

recursively. (We are still assuming that maxFj ≥ n− 1.) Let G be the face
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of lsh(Fj) that is the minimal new face when lsh(Fj) is shelled on, in the
colex shelling of the polytope P d,k,n−1. Let Gj = G + 1; this is a subset of
the last d − 1 vertices of Fj and contains maxFj . By [4, Theorem 2.6] and
[6], Gj is a face of Fj. For any facet Fi of P d,k,n, Gj ⊆ Fi if and only if
G ⊆ lsh(Fi). So by the induction hypothesis, Gj is not contained in a facet
occurring before Fj in colex order.

Ridges in previous facets. It remains to show that any ridge of P d,k,n

contained in Fj but not containing all of Gj is contained in a facet prior to
Fj . Note that we have already dealt with those ridges not containing maxFj .
Now let g ∈ G, gj = g +1 ∈ Gj , and assume gj 6= maxFj . The only ridge of
P d,k,n contained in Fj , containing maxFj , and not containing gj is Fj(ĝj).

Let H be the unique ridge of P d,k,n−1 in lsh(Fj) containing max(lsh(Fj)),
but not containing g. By the induction hypothesis, H is contained in a facet
F of P d,k,n−1 occurring before lsh(Fj) in colex order. Suppose Fj(ĝj) is
contained in a facet Fℓ of P d,k,n occurring after Fj in colex order. Then H
is contained in lsh(Fℓ). Thus the ridge H of P d,k,n−1 is contained in three
different facets: F (occurring before lsh(Fj) in colex order), lsh(Fj), and
lsh(Fℓ) (occurring after lsh(Fj) in colex order). This contradiction shows
that the ridge Fj(ĝj) can only be contained in a facet of P d,k,n occurring
before Fj in colex order.

Boolean intervals. Finally to verify assertion 4 of the theorem, observe
that every facet Fj is a (d − 1)-dimensional multiplex. The face Gj of Fj

contains the maximum vertex u of Fj . The vertex figure of the maximum
vertex in any multiplex is a simplex [6]. The interval [Gj , Fj ] is an interval in
[u, Fj ], which is the face lattice of a simplex, so [Gj , Fj ] is a Boolean lattice.
2

A nonrecursive description of the faces Gj , generalizing that for the
cyclic case in the proof, is as follows. Write the facet Fj as a disjoint union,
Fj = A0

j ∪ I1
j ∪ I2

j ∪ · · · ∪ Ip
j ∪ In

j , where In
j is the interval of Fj containing n

if n ∈ Fj , and In
j = ∅ otherwise; the Iℓ

j (1 ≤ ℓ ≤ p) are even intervals of Fj

written in increasing order; and A0
j is

• the interval containing 0, if maxFj ≤ k − 1;

• the union of the interval containing maxFj − k and the interval con-
taining maxFj − k + 2 (if the latter exists), if k ≤ max Fj ≤ n − 1;

• the interval containing n − k, if max Fj = n and n − k ∈ Fj;

• ∅, if maxFj = n and n − k 6∈ Fj .
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Then Gj = ∪p
ℓ=1E(Iℓ

j )∪ In
j . The vertices of Gj are among the last d vertices

of Fj and so are affinely independent [6]; thus Gj is a simplex.

Example. Table 1 gives the faces Fj and Gj for the colex shelling of
the ordinary polytope P 5,6,8.

j Fj Gj j Fj Gj

1 01234 ∅ 9 23 56 8 68

2 012 45 5 10 3456 8 468

3 0 2345 35 11 1234 78 78

4 0 23 56 6 12 12 45 78 578

5 0 3456 46 13 0123 678 678

6 01 34 67 7 14 34 678 4678

7 01 4567 57 15 012 5678 5678

8 2345 8 8 16 45678 45678

Table 1: Shelling of P 5,6,8

Let us look at what happens when facet F13 is shelled on. The ridges
of P 5,6,8 contained in F13 are 0123, 0236, 01367, 012678, 12378, 2368, and
3678. The first ridge, 0123, is contained in F1 = 01234. The ridge 0236 is
F13(ẑ2) = F13(1̂), and max([i, i+2r− 1]∪Y ) = 3 < 4 = i+ k− 2, so we find
that 0236 is contained in F4 = 02356. The ridge 01367 is F13(ẑ3) = F13(2̂),
so we find that 01367 is contained in F6 = 013467. This facet F13 = 0123678
is shifted from the facet 012567 of P 5,6,7, which in turn is shifted from the
facet 01456 of the cyclic polytope P 5,6,6. When 01456 occurs in the shelling
of the cyclic polytope, its minimal new face is its right interval, 456. In
P 5,6,8, then, the minimal new face when F13 is shelled on is 678. The other
ridges of F13 not containing 678 are 12378 and 2368. The interval [G13, F13]
contains the triangle 678, the 3-simplex 3678, the 3-multiplex 012678, and
F13 itself (which is a pyramid over 012678).

Note that for the multiplex, Md,n = P d,d,n, this theorem gives a shelling
different from the one mentioned in Section 2. In the standard notation for
the facets of the multiplex (see Definition 4), the colex shelling order is F0,
F1, . . . , Fn−d, Fn−1, Fn−2, . . . , Fn−d+1, Fn. The statements of this section
hold also for even-dimensional multiplexes.
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4 The h-vector from the shelling

The h-vector of a simplicial polytope can be obtained easily from any shelling
of the polytope. For P a simplicial polytope, and ∪[Gj , Fj ] the partition of
a face lattice of P arising from a shelling, h(P, x) =

∑

j xd−|Gj |. For general
polytopes, the (toric) h-vector can also be decomposed according to the
shelling partition. For a shelling, F1, F2, . . . , Fn, of a polytope P , write
Gj for the set of faces of Fj not in ∪i<jFi. Then h(P, x) =

∑n
j=1 h(Gj , x),

where h(Gj , x) =
∑

G∈Gj
g(G,x)(x− 1)d−1−dim G. However, in general we do

not know that the coefficients of h(Gj , x) count anything natural, nor even
that they are nonnegative. Stanley raised this issue in [16, Section 6]. It has
apparently been settled by Tom Braden [8].

We turn now to h-vectors of ordinary polytopes. In [3] we used the flag
vector of the ordinary polytope to compute its toric h-vector.

Theorem 4.1 ([3]) For n ≥ k ≥ d = 2m + 1 ≥ 5 and 1 ≤ i ≤ m,

hi(P
d,k,n) =

(

k − d + i

i

)

+ (n − k)

(

k − d + i − 1

i − 1

)

.

We did not understand why the h-vector turned out to have such a nice form.
Here we show how the h-vector can be computed from the colex shelling.
Properties 2 and 4 of Theorem 3.6 are critical.

In [3] we showed that the flag vector of a multiplicial polytope depends
only on the f -vector. However, for our purposes here it is more useful to
write the h-vector in terms of the f -vector and the flag vector entries of the
form f0i. We introduce a modified f -vector. Let f̄−1 = f−1 = 1, f̄0 = f0,
and f̄d−1 = fd−1 + (f0,d−1 − dfd−1); and for 1 ≤ j ≤ d − 2, let

f̄j = fj + (f0,j+1 − (j + 2)fj+1) + (f0,j − (j + 1)fj).

(Thus, f̄1 = f1 + (f02 − 3f2) + (f01 − 2f1) = f1 + (f02 − 3f2).)

Theorem 4.2 If P is a multiplicial d-polytope, then

h(P, x) =
d
∑

i=0

hi(P )xd−i =
d
∑

i=0

f̄i−1(P )(x − 1)d−i.

Proof: As observed in the proof of Theorem 2.1, the g-polynomial of an
e-dimensional multiplex M with n+1 vertices is g(M,x) = 1+(n− e)x. So
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for a multiplicial d-polytope P ,

h(P, x) =
∑

G face of P
G6=P

g(G,x)(x − 1)d−1−dim G

=
∑

G face of P
G6=P

(1 + (f0(G) − 1 − dim G)x)(x − 1)d−1−dim G

=
d
∑

i=0

fi−1(x − 1)d−i +
d−1
∑

i=1

(f0i − (i + 1)fi)x(x − 1)d−1−i

=
d
∑

i=0

fi−1(x − 1)d−i +
d−1
∑

i=1

(f0i − (i + 1)fi)[(x − 1)d−i + (x − 1)d−1−i]

= (x − 1)d + f0(x − 1)d−1

+
d−1
∑

i=2

(fi−1 + (f0i − (i + 1)fi) + (f0,i−1 − ifi−1))(x − 1)d−i

+ (fd−1 + (f0,d−1 − dfd−1))

=
d
∑

i=0

f̄i−1(P )(x − 1)d−i.

2

Simplicial polytopes are a special case of multiplicial polytopes. Clearly,
when P is simplicial, f̄(P ) = f(P ), and we recover the definition of the sim-
plicial h-vector in terms of the f -vector. The multiplicial h-vector formula
can be thought of as breaking into two parts: one involving the f -vector,
and matching the simplicial h-vector formula; the other involving the “ex-
cess vertex counts,” f0,j − (j + 1)fj . In the simplicial case the sum of the
entries in the h-vector is the number of facets. For multiplicial polytopes
∑d

i=0 hi(P ) = f̄d−1(P ) = fd−1 + (f0,d−1 − dfd−1).
In general, applying the simplicial h-formula to a nonsimplicial f -vector

produces a vector with no (known) combinatorial interpretation. This vector
is neither symmetric nor nonnegative in general. We will see that in the case
of ordinary polytopes something special happens. Write h′(P, x) for the h-
polynomial that P would have if it were simplicial.

Definition 6 The h′-polynomial of a multiplicial d-polyopte P is given by

h′(P, x) =
d
∑

i=0

h′
i(P )xd−i =

d
∑

i=0

fi−1(P )(x − 1)d−i.
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(The h′-vector is then the vector of coefficients of the h′-polynomial.)

Theorem 4.3 Let P d,k,n be an ordinary polytope. Let ∪v
j=1[Gj , Fj ] be the

partition of the face lattice of P d,k,n associated with the colex shelling of
P d,k,n. Then for all i, 0 ≤ i ≤ d, h′(P d,k,n, x) =

∑v
j=1 xd−|Gj |.

Furthermore, if Cd,k is the cyclic d-polytope with k + 1 vertices, then for
all i, 0 ≤ i ≤ d, h′

i(P
d,k,n) ≥ hi(C

d,k), with equality for i > d/2.

Proof: Direct evaluation gives h′
0(P ) = h′

d(P ) = 1. Let F1, F2, . . . , Fv

be the colex shelling of P d,k,n. By Theorem 3.6, part 2, the set of faces of
P d,k,n has a partition as ∪v

j=1[Gj , Fj ]. By Theorem 3.6, part 4, the interval

[Gj , Fj ] has exactly
(d−1−dim Gj

ℓ−dimGj

)

faces of dimension ℓ for dimGj ≤ ℓ ≤ d−1.

Let ki = |{j : dim Gj = i − 1}|. Then fℓ =
∑l+1

i=0

( d−i
ℓ−i+1

)

ki. These are the
(invertible) equations that give fℓ in terms of h′

i, so for all i, h′
i = ki = |{j :

dim Gj = i − 1}|.
The second part we prove by induction on n ≥ k. We will also need the

following statement, which we prove in the course of the induction as well. If
Fj is a facet of P d,k,n with maxFj = n− 2, then |Gj | ≤ (d− 1)/2. The base
case of the induction is the cyclic polytope, Cd,k = P d,k,k. We need to show
that if Fj is a facet of Cd,k with maxFj = k−2, then |Gj | ≤ (d−1)/2. This
follows from the description of Gj in the proof of Theorem 3.6, because in
this case, in Fj = I0

j ∪ I1
j ∪ I2

j ∪· · · ∪ Ip
j ∪ Ik

j , Ik
j = ∅ and |Gj | = |∪p

ℓ=1 Iℓ
j |/2 ≤

(d − 1)/2 (since d is odd).
Recall from the proof of Theorem 3.6 that for each facet Fj of P d,k,n, Gj

is the same size as the minimum new face G of the corresponding facet of
P d,k,n−1; that facet is the same (as vertex set) as Fj , if max Fj ≤ n− 2, and
is lsh(Fj), if max Fj ≥ n− 1. From Proposition 3.5 we see that each facet of
P d,k,n−1 with maximum vertex n− 2 gives rise to two facets of P d,k,n, while
all others give rise to exactly one facet each. Thus for all i,

h′
i(P

d,k,n) = h′
i(P

d,k,n−1)

+ |{j : Fj is a facet of P d,k,n with max Fj = n − 1 and |Gj | = i}|.

Thus, for all i, h′
i(P

d,k,n) ≥ h′
i(P

d,k,n−1), so by induction, h′
i(P

d,k,n) ≥
h′

i(C
d,k). Furthermore, if maxFj = n − 1, then max(lsh(Fj)) = (n− 1) − 1,

so by the induction hypothesis, |Gj | ≤ (d−1)/2. So for i > d/2, h′
i(P

d,k,n) =
h′

i(P
d,k,n−1) = hi(C

d,k). 2

Note that for the multiplex Md,n (d odd or even), h′(Md,n) = (1, n−d+
1, 1, 1, . . . , 1, 1), while h(Md,n) = (1, n − d + 1, n − d + 1, . . . , n − d + 1, 1).
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Now for multiplicial polytopes, we consider the remaining part of the
h-vector, coming from the parameters f0,j − (j + 1)fj. This is

h(P, x) − h′(P, x)

= (f0,d−1 − dfd−1) +
d−1
∑

i=2

((f0,i − (i + 1)fi) + (f0,i−1 − ifi−1)) (x − 1)d−i.

So

h(P, x + 1) − h′(P, x + 1)

= (f0,d−1 − dfd−1) +
d−1
∑

i=2

((f0,i − (i + 1)fi) + (f0,i−1 − ifi−1)) xd−i

=
d−1
∑

i=2

(f0,i − (i + 1)fi)(x + 1)xd−1−i.

So
d−1
∑

i=2

(hi(P ) − h′
i(P ))(x + 1)d−1−i =

d−1
∑

i=2

(f0,i − (i + 1)fi)x
d−1−i.

For the ordinary polytope, this equation can be applied locally to give
the contribution to h(P d,k,n, x) − h′(P d,k,n, x) from each interval [Gj , Fj ]
of the shelling partition. For each j, and each i ≥ dim Gj , let bj,i =
∑

(f0(H) − (i + 1)), where the sum is over all i-faces H in [Gj , Fj ]. Let
bj(x) =

∑d−1
i=dimGj

bj,ix
d−1−i. Write bj(x) in the basis of powers of (x + 1):

bj(x) =
∑

aj,i(x + 1)d−1−i. Then aj,i = hi(Gj) − h′
i(Gj), the contribution to

hi(P
d,k,n)−h′

i(P
d,k,n) from faces in the interval [Gj , Fj ]. Note that for fixed

j,
∑

i aj,i = bj(0) = f0(Fj) − d. We will return to the coefficients aj,i after
triangulating the ordinary polytope.

Example. The h-vector of P 5,6,8 is h(P 5,6,8) = (1, 4, 7, 7, 4, 1). The
sum of the hi is 24, which counts the 16 facets plus one for each of the
four 6-vertex facets, plus two for each of the two 7-vertex facets. Referring
to Table 1, we see that h′(P 5,6,8) = (1, 4, 5, 3, 2, 1); from this we compute
f(P 5,6,8) = (9, 31, 52, 44, 16). The nonzero aj,i here are a6,2 = a7,3 = a11,2 =
a12,3 = 1 and a13,3 = a15,4 = 2. In this case each interval [Gj , Fj ] contributes
to hi(P

d,k,n) − h′
i(P

d,k,n) for at most one i, but this is not true in general.

5 Triangulating the ordinary polytope

Triangulations of polytopes or of their boundaries can be used to calculate
the h-vector of the polytope if the triangulation is shallow [2]. The solid
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ordinary polytope need not have a shallow triangulation, but its boundary
does have a shallow triangulation. The triangulation is obtained simply by
triangulating each multiplex as in Section 2. This triangulation is obtained
by “pushing” the vertices in the order 0, 1, . . . , n. (See [13] for pushing
(placing) triangulations.)

Theorem 5.1 The boundary of the ordinary polytope P d,k,n has a shallow
triangulation. The facets of one such triangulation are the Gale subsets of
[i, i + k] (where 0 ≤ i ≤ n − k) of size d containing either 0 or n or the set
{i, i + k}.

Proof: First we show that each such set is a consecutive subset of some
facet of P d,k,n. Suppose Z is a Gale subset of [i, i + k] of size d containing
{i, i + k}. Write Z = [i, i + a − 1] ∪ Y ∪ [i + k − b + 1, i + k], where a ≥ 1,
b ≥ 1, and Y ∩ {i + a, i + k − b} = ∅. Since Z is a Gale subset, |Y | is even;
let r = (d− 1− |Y |)/2. Since |Z| = d, a + b = 2r + 1, so a and b are each at
most 2r. Define X = [i+ a− 2r, i+ a− 1]∪Y ∪ [i+ k− b+ 1, i+ k− b+ 2r].
Note that i + k − b + 1 = (i + a− 2r) + k. Then retn(X) is the vertex set of
a facet of P d,k,n, and Z is a consecutive subset of retn(X).

Now suppose that Z is a Gale subset of [0, k] of size d containing 0,
but not k. Write Z = {0} ∪ Y ∪ [j − 2r + 1, j], where j < k, r ≥ 1,
and j − 2r 6∈ Y . Then |Y | = d − 2r − 1, and Z = retn(X), where X =
[j − 2r + 1 − k, j − k] ∪ Y ∪ [j − 2r + 1, j]. So Z itself is the vertex set of a
facet of P d,k,n. The case of sets containing n but not n − k works the same
way.

Next we show that all consecutive d-subsets of facets F of P d,k,n are of
one of these types. Let F = retn(X), where X = [i, i+2r−1]∪Y ∪ [i+k, i+
k + 2r− 1], with Y a paired subset of size d− 2r− 1 of [i+ 2r + 1, i+ k− 2].
Suppose first that i + 2r − 1 ≥ 0 and i + k ≤ n. Let Z be a consecutive
d-subset of F . Since |Y | = d − 2r − 1, |[i, i + 2r − 1] ∩ F | ≤ 2r, and
|[i+k, i+k +2r−1]∩F | ≤ 2r, it follows that i+2r−1 and i+k must both
be in Z. Thus we can write Z = [i+2r−a, i+2r−1]∪Y ∪ [i+k, i+k+b−1],
with a+ b = 2r + 1, i+ 2r− a ≥ 0, and i+ k + b− 1 ≤ n. Let ℓ = i+ 2r− a.
Then i + k + b − 1 = ℓ + k, so 0 ≤ ℓ ≤ n − k, and Z is a Gale subset of
[ℓ, ℓ + k] containing {ℓ, ℓ + k}.

If i + 2r − 1 < 0, then i + k + 2r − 1 < k ≤ n, and F = {0} ∪ Y ∪ [i +
k, i + k + 2r − 1]. Then |F | = d and F itself is a Gale subset of [0, k] of size
d containing 0. Similarly for the case i + k > n.

The sets described are exactly the (d − 1)-simplices obtained by trian-
gulating each facet of P d,k,n according to Theorem 2.1. The fact that this
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triangulation is shallow follows from the corresponding fact for this triangu-
lation of a multiplex. 2

Let T = T (P d,k,n) be this triangulation of ∂P d,k,n. Since T is shallow,
h(P d,k,n, x) = h(T , x). We calculate h(T , x) by shelling T .

Theorem 5.2 Let F1, F2, . . . , Fv be the colex order of the facets of P d,k,n.
For each j, if Fj = {z1, z2, . . . , zpj

} (z1 < z2 < · · · < zpj
), and 1 ≤ ℓ ≤

pj − d + 1, let Tj,ℓ = {zℓ, zℓ+1, . . . , zℓ+d−1}. Then T1,1, T1,2, . . . , T1,p1−d+1,
T2,1, . . . , T2,p2−d+1, . . . , Tv,1, . . . , Tv,pv−d+1 is a shelling of T (P d,k,n).

Let Uj,ℓ be the minimal new face when Tj,ℓ is shelled on. As vertex sets,
Uj,pj−d+1 = Gj .

Proof: Throughout the proof, write Fj = {z1, z2, . . . , zpj
} (z1 < z2 < · · · <

zpj
). We first show that Gj is the unique minimal face of Tj,pj−d+1 not

contained in (∪j−1
i=1 ∪pi−d+1

ℓ=1 Ti,ℓ) ∪ (∪
pj−d
ℓ=1 Tj,ℓ). The set Gj is not contained

in a facet of P d,k,n earlier than Fj . So Gj does not occur in a facet of T of
the form Ti,ℓ for i < j. Also, maxFj ∈ Gj , so Gj does not occur in a facet
of T of the form Tj,ℓ for ℓ ≤ pj − d. Thus Gj does not occur in a facet of T
before Tj,pj−d+1.

We show that for zq ∈ Gj , Tj,pj−d+1 \ {zq} is contained in a facet of T
occurring before Tj,pj−d+1. There is nothing to check for j = v, because
pv − d + 1 = 1 and so Tv,1 = Fv is the last simplex in the purported shelling
order. So we may assume that j < v and thus Gj is contained in the last
d − 1 vertices of Fj .
Case 1. If pj > d and q = pj (giving the maximal element of Fj), then
Tj,pj−d+1 \ {zpj

} ⊂ Tj,pj−d.
Case 2. Suppose pj − d + 2 ≤ q ≤ pj − 1. Then Tj,pj−d+1 \ {zq} ⊆

{zq−d+2, . . . , zq−1, zq+1 . . . , zpj
} = H. This is a ridge of P d,k,n in Fj not

containing Gj , and hence H is contained in a previous facet Fℓ of P d,k,n.
Since H is a ridge in both Fj and Fℓ, H is obtained from each facet by
deleting a single element from a consecutive string of vertices in the facet.
So |H| ≤ |Fℓ∩ [zq−d+2, zpj

]| ≤ |H|+1, and so d−1 ≤ |Fℓ∩ [zpj−d+1, zpj
]| ≤ d.

So Tj,pj−d+1 \ {zq} is contained in a consecutive set of d elements of Fℓ, and

hence in a (d−1)-simplex of T (P d,k,n) belonging to Fℓ. This simplex occurs
before Tj,pj−d+1 in the specified shelling order.
Case 3. Otherwise pj = d (so pj − d + 1 = 1) and q = d. Then Tj,1 = Fj

and H = Tj,1 \ {zd} is a ridge of P d,k,n in Fj not containing maxFj , so
H is contained in a previous facet Fℓ of P d,k,n. As in Case 2, d − 1 ≤
|Fℓ ∩ [z1, zd−1]| ≤ d. So Tj,1 \ {zd} is contained in a consecutive set of d
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elements of Fℓ, and hence in a (d− 1)-simplex of T (P d,k,n) belonging to Fℓ.
This simplex occurs before Tj,pj−d+1 in the specified shelling order.

So in the potential shelling of T , Gj is the unique minimal new face
as Tj,pj−d+1 is shelled on. Write Uj,pj−d+1 = Gj . At this point we need
a clearer view of the simplex Tj,ℓ. Recall that Fj is of the form retn(X),
where X = [i, i + 2r − 1] ∪ Y ∪ [i + k, i + k + 2r − 1], with Y a subset of
size d − 2r − 1. If i + 2r − 1 < 0 or i + k > n, then pj = |Fj | = d, and
Tj,1 = Tj,pj−d+1 = Fj ; we have already completed this case. So assume
i + 2r − 1 ≥ 0 and i + k ≤ n. A consecutive string of length d in retn(X)
must then be of the form [i + s, i + 2r − 1] ∪ Y ∪ [i + k, i + k + s] for
some s, 0 ≤ s ≤ 2r − 1. (All such strings—with appropriate Y —having
i + s ≥ 0 and i + k + s ≤ n occur as Tj,ℓ.) In particular, for ℓ < pj − d + 1,
Tj,ℓ = Tj,ℓ+1 \ {max Tj,ℓ+1} ∪ {min Tj,ℓ+1 − 1} and maxTj,ℓ = minTj,ℓ + k.

Now define Uj,ℓ for ℓ ≤ pj − d recursively by Uj,ℓ = Uj,ℓ+1 \ {z} ∪ {z −
k, z − 1}, where z = max Tj,ℓ+1. By the observations above, Uj,ℓ ⊆ Tj,ℓ.
We prove by downward induction that Uj,ℓ is not contained in a facet Fi of
P d,k,n before Fj , that Uj,ℓ is not contained in a facet of T occurring before
Tj,ℓ, and that any ridge of T in Tj,ℓ not containing all of Uj,ℓ is in an earlier
facet of T . The base case of the induction is ℓ = pj − d + 1, and this case
has been handled above.

Note that {z−k, z−1} is a diagonal of the 2-face {z−k−1, z−k, z−1, z}
of P d,k,n [9]. So if Fi is a facet of P d,k,n containing Uj,ℓ, then Fi contains
{z − k − 1, z − k, z − 1, z}. Thus Fi contains Uj,ℓ+1, so, by the induction
assumption, i ≥ j. Therefore, for i < j, and any r, Ti,r does not contain
Uj,ℓ. For r < ℓ, Tj,r does not contain z − 1 = maxTj,ℓ, so Tj,r does not
contain Uj,ℓ.

Now we wish to show that for any g ∈ Uj,ℓ, Tj,ℓ \ {g} is in a previous
facet of T .
Case 1. If g = z − 1 = maxTj,ℓ and ℓ ≥ 2, then Tj,ℓ \ {g} ⊂ Tj,ℓ−1.
Case 2. If g = z−1 = maxTj,ℓ and ℓ = 1, then Tj,ℓ\{g} is the leftmost ridge
of P d,k,n in Fj and, in particular, does not contain max Fj . So H = Tj,ℓ\{g}
is contained in a previous facet Fe of P d,k,n. As in the ℓ = pj − d + 1 case,
Fe ∩ [min Tj,ℓ,max Tj,ℓ] is contained in a consecutive set of d elements of Fe,
and hence in a (d− 1)-simplex of T (P d,k,n) belonging to Fe. So Tj,ℓ \ {g} is
contained in a previous facet of T .
Case 3. Suppose g < z − 1 and g ∈ Uj,ℓ ∩ Uj,ℓ+1. Since {z − 1, z} ⊂ Tj,ℓ+1,
Tj,ℓ+1 contains at most d − 3 elements less than g. The ridge H of P d,k,n

in Fj containing Tj,ℓ+1 \ {g} consists of the d − 2 elements of Fj below g
and the (up to) d − 2 elements of Fj above g. In particular, H contains
min Tj,ℓ+1 − 1 = minTj,ℓ. So Tj,ℓ \ {g} ⊂ H. Since dim Tj,ℓ \ {g} = d − 2,
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H is the (unique) smallest face of P d,k,n containing Tj,ℓ+1 \ {g}. By the
induction hypothesis Tj,ℓ+1 \ {g} is contained in a previous facet Ti,r of T ;
here i < j because maxTj,ℓ+1 ∈ Tj,ℓ+1 \{g}. The (d−2)-simplex Tj,ℓ+1 \{g}
is then contained in a ridge of P d,k,n contained in Fi, but this ridge must be
H, by the uniqueness of H. So Tj,ℓ \ {g} ⊂ H = Fi ∩Fj . As in earlier cases,
Fi ∩ [min Tj,ℓ,max Tj,ℓ] is contained in a consecutive set of d elements of Fi,
and hence in a (d− 1)-simplex of T (P d,k,n) belonging to Fi. So Tj,ℓ \ {g} is
contained in a previous facet of T .
Case 4. Finally, let g = z−k, which is min Tj,ℓ +1. Then Tj,ℓ contains d−2
elements above g. Let H be the ridge of P d,k,n in Fj containing Tj,ℓ \ {g}.
Then max H = maxTj,ℓ < maxFj , so H does not contain Gj . So H is in
a previous facet Fi of P d,k,n. As in earlier cases, Fi ∩ [min Tj,ℓ,max Tj,ℓ] is
contained in a consecutive set of d elements of Fi, and hence in a (d − 1)-
simplex of T (P d,k,n) belonging to Fi. So Tj,ℓ \{g} is contained in a previous
facet of T .

Thus T1,1, T1,2, . . . , T1,p1−d+1, T2,1, . . . , T2,p2−d+1, . . . , Tv,1, . . . , Tv,pv−d+1

is a shelling of T (P d,k,n). 2

Corollary 5.3 Let n ≥ k ≥ d = 2m + 1 ≥ 5. Let ∪[Gj , Fj ] be the partition
of the face lattice of P d,k,n from the colex shelling, and let ∪[Uj,ℓ, Tj,ℓ] be the
partition of the face lattice of T (P d,k,n) from the shelling of Theorem 5.2.
Then

1. For each i, hi(P
d,k,n) ≥ h′

i(P
d,k,n).

2. The contribution to hi(P
d,k,n)−h′

i(P
d,k,n) from the interval [Gj , Fj ] is

aj,i = |{ℓ : |Uj,ℓ| = i, 1 ≤ ℓ ≤ pℓ − d}| ≥ 0.

Proof: The h-vector of T counts the sets Uj,ℓ of each size. Among these
are all the sets Gj counted by the h′-vector of P d,k,n. Thus

hi(T (P d,k,n)) = |{(j, ℓ) : |Uj,ℓ| = i}|

≥ |{(j, ℓ) : |Uj,ℓ| = i and ℓ = pj − d + 1}| = h′
i(P

d,k,n).

Recall that we write Gj for the set of faces of Fj not in ∪i<jFi; here Gj is
the set of faces in [Gj , Fj ]. Write also T Gj for the set of faces of T that are
contained in Fj but not in ∪i<jFi. By [2, Corollary 7], since T is a shallow
triangulation of ∂P d,k,n, g(G,x) =

∑

(x−1)d−1−dim σ, where the sum is over
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all faces σ of T that are contained in G but not in any proper subface of G.
Thus

h(Gj , x) =
∑

G∈[Gj ,Fj ]

g(G,x)(x − 1)d−1−dim G

=
∑

σ∈T Gj

(x − 1)d−1−dim σ =
pℓ−d+1
∑

ℓ=1

xd−|Uj,ℓ|

Since h′(Gj , x) = xd−|Gj | = x
d−|Uj,pj−d+1|,

∑

i

aj,ix
i = h(Gj , x) − h′(Gj , x) =

pℓ−d
∑

ℓ=1

xd−|Uj,ℓ|,

or
aj,i = |{ℓ : |Uj,ℓ| = i, 1 ≤ ℓ ≤ pℓ − d}| ≥ 0.

2

(j, ℓ) Tj,ℓ Uj,ℓ (j, ℓ) Tj,ℓ Uj,ℓ

1, 1 01234 ∅ 11, 1 1234 7 27

2, 1 012 45 5 11, 2 234 78 78

3, 1 0 2345 35 12, 1 12 45 7 257

4, 1 0 23 56 6 12, 2 2 45 78 578

5, 1 0 3456 46 13, 1 0123 6 126

6, 1 01 34 6 16 13, 2 123 67 267

6, 2 1 34 67 7 13, 3 23 678 678

7, 1 01 456 156 14, 1 34 678 4678

7, 2 1 4567 57 15, 1 012 56 1256

8, 1 2345 8 8 15, 2 12 567 2567

9, 1 23 56 8 68 15, 3 2 5678 5678

10, 1 3456 8 468 16, 1 45678 45678

Table 2: Shelling of triangulation of P 5,6,8

Example. Table 2 gives the shelling of the triangulation of P 5,6,8. (Refer
back to Table 1 for the shelling of P 5,6,8 itself.) Among the rows (6, 1), (7, 1),
(11, 1), (12, 1), (13, 1), (13, 2), (15, 1), (15, 2) (rows (j, ℓ) that are not the last
row for that j), count the Uj,ℓ of cardinality i to get hi(P

5,6,8) − h′
i(P

5,6,8).
Note that U13,3 = G13 (from Table 1), and that U13,2 = U13,3 \ {8} ∪ {2, 7}.
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The ridges in T13,2 are 1236, 1237, 1267, 1367, and 2367. The first ridge,
1236, falls under Case 1 of the proof of Theorem 5.2; it is contained in the
previous facet, T13,1. The next ridge, 1237, falls under Case 3; it is contained
in the ridge 12378 of P 5,6,8 in F13 = 0123678, and 12378 also contains the
ridge 2378 in T13,3. The induction assumption says that 2378 is contained
in an earlier facet, in this case T11,2, and 12378 is contained in F11. Finally,
the ridge 1237 is contained in the simplex T11,1, part of the triangulation
of F11. The last ridge of T13,2 not containing 267 is 1367. It falls under
Case 4. The set 1367 is contained in the ridge 01367 of P 5,6,8, contained in
F13. This ridge is also contained in the earlier facet F6. The ridge 1367 of
the triangulation is contained in the simplex T6,2.

Theorem 5.4 Let n ≥ d+k−1. For 1 ≤ i ≤ d−1, hi(P
d,k,n)−hi(P

d,k,n−1)
is the number of facets Tj,ℓ of T (P d,k,n) such that maxFj = n − 1 and

|Uj,ℓ| = i. For 1 ≤ i ≤ m, this is
(k−d+i−1

i−1

)

.

Proof: Refer to Proposition 3.5 for a description of the facets of P d,k,n in
terms of those of P d,k,n−1. For n ≥ d + k − 1, for every facet P d,k,n ending
in n, the translation F − 1 is a facet of P d,k,n−1. (For smaller n, a facet
of P d,k,n may end in 0, in which case lsh(F) is a proper subset of F − 1.)
The same holds for the simplices Tj,ℓ triangulating these facets, and for the
sets Uj,ℓ. The facets of P d,k,n ending in n − 2 are facets of P d,k,n−1, and
the same holds for the corresponding Tj,ℓ and Uj,ℓ. The contributions to
h(P d,k,n) from facets ending in any element but n−1 thus total h(P d,k,n−1).
So for 1 ≤ i ≤ d− 1, hi(P

d,k,n)− hi(P
d,k,n−1) is the number of facets Tj,ℓ of

T (P d,k,n) such that maxFj = n − 1 and |Uj,ℓ| = i.
Now consider the set S of facets Tj,ℓ of T (P d,k,n) with maxFj = n − 1.

For each T ∈ S, T is a set of d elements occurring consecutively in some Fj

with maximum element n − 1. So T can be written as

T = [b, n − k − 1] ∪ [n − k + 1, c] ∪ Y ∪ [e, b + k], (2)

where

1. n − k − d + 1 ≤ b ≤ n − k − 1;

2. n − k ≤ c ≤ b + d − 1 and c − n + k is even (here c = n − k means
[n − k + 1, c] = ∅);

3. Y is a paired subset of [c + 2, e − 1];

4. e = b + k− 1 if n− k− b is odd, and e = b+ k if n− k− b is even; and
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5. |T | = d.

In these terms, the minimum new face U when T is shelled on is U =
[b + 1, n − k − 1] ∪ E(Y ) ∪ {b + k}.

We give a bijection between the facets T in S with |U | = i (where
1 ≤ i ≤ m) and the (k − d)-element subsets of [1, k − d + i− 1]. Let T be as
in Equation 2. Then i = |U | = n−k−b+|Y |/2. For each x ≥ c+1, let y(x) be
the number of pairs in Y with both elements less than x. Let a1 = n−k−b =
i−|Y |/2. Write [c+1, e−1]\Y = {x1, x2, . . . , xk−d}, with the xℓs increasing.
(This set has k − d elements because d = (c − b) + |Y | + (b + k − e + 1), so
|[c + 1, e − 1] \ Y | = e − c − 1 − |Y | = k − d.) Set

A(T ) = {a1 + y(xℓ) + ℓ − 1 : 1 ≤ ℓ ≤ k − d}.

To see that this is a subset of [1, k − d + i − 1], note that the elements of
A(T ) form an increasing sequence with minimum element a1 and maximum
element a1 + y(xk−d)+ (k− d− 1) ≤ a1 + |Y |/2+ (k − d− 1) = k− d+ i− 1.

For the inverse of this map, write a (k−d)-element subset of [1, k−d+i−1]
as A = {a1, a2, . . . , ak−d}, with the aℓs increasing. Then 1 ≤ a1 ≤ i. Let

x1 = n − k + d − 2i + a1 − χ(a1 odd).

Set

T (A) = [n − k − a1, n − k − 1] ∪ [n − k + 1, x1 − 1]

∪ Y ∪ [n − a1 − χ(a1 odd), n − a1],

where

Y = ([x1, n−a1−1−χ(a1 odd)]\{x1 +2(aℓ−a1)− (ℓ−1) : 1 ≤ ℓ ≤ k−d}).

We check that this gives a set of the required form.
(1) Since 1 ≤ a1 ≤ i ≤ d − 1 n − k − d + 1 ≤ n − k − a1 ≤ n − k − 1.
(2) x1 − 1−n + k = d− 2i− 1 + (a1 −χ(a1 odd)), which is nonnegative and
even; x1−1 = (n−k−a1+d−1)−(2i−2a1 +χ(a1 odd)) ≤ n−k−a1+d−1.
(3) Y is clearly a subset of [x1 + 1, n − a1 − χ(a1 odd) − 1]. To see that
Y is paired note that the difference between two consecutive elements in
the removed set is (x1 + 2(aℓ+1 − a1) − ℓ) − (x1 + 2(aℓ − a1) − (ℓ − 1)) =
2(aℓ+1 − aℓ) − 1.
(4) This condition holds by definition.
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(5) To check the cardinality of T (A), observe

x1 + 2(ak−d − a1) − (k − d − 1)

≤ x1 + 2(k − d + i − 1) − 2a1 − (k − d − 1)

= x1 + k − d + 2i − 2a1 − 1 = n − a1 − χ(a1 odd) − 1.

So

{x1 + 2(aℓ − a1)− (ℓ− 1) : 1 ≤ ℓ ≤ k− d} ⊆ [x1 + 1, n− a1 − 1−χ(a1 odd)],

and
|Y | = (n − a1 − χ(a1 odd) − x1) − (k − d) = 2i − 2a1.

So |T (A)| = x1 − (n − k − a1) + |Y | + χ(a1 odd) = d.
Also, in this case U = [n − k − a1 + 1, n − k − 1] ∪ E(Y ) ∪ {n − a1}, so

|U | = i.
It is straightforward to check that these maps are inverses. The main

point is that, if aℓ = a1 + y(xℓ) + ℓ − 1, then

x1 + 2(aℓ − a1) − (ℓ − 1) = x1 + 2(y(xℓ) + ℓ − 1) − (ℓ − 1)

= x1 + 2y(xℓ) + ℓ − 1 = xℓ.

2

Example. Consider the ordinary polytope P 7,9,15. There are six facets
with maximum vertex 14; they are (with sets Gj underlined) {4, 5, 7, 8, 9, 10, 13, 14},
{4, 5, 7, 8, 10, 11, 13, 14}, {4, 5, 8, 9, 10, 11, 13, 14}, {2, 3, 4, 5, 7, 8, 11, 12, 13, 14},
{2, 3, 4, 5, 8, 9, 11, 12, 13, 14}, and {0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 14}. Among
the 6-simplices occurring in the triangulation of these facets, six have |Uj,ℓ| =
3. Table 3 gives the bijection from this set of simplices to the 2-element sub-
sets of [1, 4].

Again, the results of this section hold for even-dimensional multiplexes
as well.

6 Afterword

The story of the combinatorics of simplicial polytopes is a beautiful one.
There one finds an intricate interplay among the face lattice of the poly-
tope, shellings, the Stanley-Reisner ring and the toric variety, tied together
with the h-vector. The cyclic polytopes play a special role, serving as the
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Tj,ℓ b c e Y a1 x1, x2 y(xi) A(Tj,ℓ)

4, 5, 7, 8, 10, 11, 13 4 8 13 10, 11 2 9, 12 0, 1 {2, 4}
5, 8, 9, 10, 11, 13, 14 5 6 13 8, 9, 10, 11 1 7, 12 0, 2 {1, 4}

3, 4, 5, 7, 8, 11, 12 3 8 11 ∅ 3 9, 10 0, 0 {3, 4}
4, 5, 7, 8, 11, 12, 13 4 8 13 11, 12 2 9, 10 0, 0 {2, 3}

5, 8, 9, 11, 12, 13, 14 5 6 13 8, 9, 11, 12 1 7, 10 0, 1 {1, 3}
5, 9, 10, 11, 12, 13, 14 5 6 13 9, 10, 11, 12 1 7, 8 0, 0 {1, 2}

Table 3: Bijection with 2-element subsets of {1, 2, 3, 4}

extreme examples, and providing the environment in which to build repre-
sentative polytopes for each h-vector (the Billera-Lee construction [5]). In
the general case of arbitrary convex polytopes, the various puzzle pieces have
not interlocked as well. In this paper we made progress on putting the puzzle
together for the special class of ordinary polytopes. Since the ordinary poly-
topes generalize the cyclic polytopes, a natural next step would be to mimic
the Billera-Lee construction, or Kalai’s extension of it [11], on the ordinary
polytopes, as a way of generating multiplicial flag vectors. It would also be
interesting to see if there is a ring associated with these polytopes, particu-
larly one having a quotient with Hilbert function equal to the h′-polynomial.
Another open problem is to determine the best even-dimensional analogues
of the ordinary polytopes. They may come from taking vertex figures of odd-
dimensional ordinary polytopes, or from generalizing Dinh’s combinatorial
description of the facets of ordinary polytopes. Looking beyond ordinary
and multiplicial polytopes, we should ask what other classes of polytopes
have shellings with special properties that relate to the h-vector?
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