Shelling and the h-vector of the (extra-) ordinary polytope

Margaret M. Bayer*
Department of Mathematics
University of Kansas
Lawrence, KS 66045-7523

July 17, 2004

Abstract

Ordinary polytopes were introduced by Bisztriczky as a (nonsimplicial) generalization of cyclic polytopes. We show that the colex order of facets of the ordinary polytope is a shelling order. This shelling shares many nice properties with the shellings of simplicial polytopes. We also give a shallow triangulation of the ordinary polytope, and show how the shelling and the triangulation are used to compute the toric h-vector of the ordinary polytope. As one consequence, we get that the contribution from each shelling component to the h-vector is nonnegative. Another consequence is a combinatorial proof that the entries of the h-vector of any ordinary polytope are simple sums of binomial coefficients.

1 Introduction

1.1 Motivation

This paper has a couple of main motivations. The first comes from the study of toric h-vectors of convex polytopes. The h-vector played a crucial

[^0]role in the characterization of face vectors of simplicial polytopes $[5,14,15]$. In the simplicial case, the h-vector is linearly equivalent to the face vector, and has a combinatorial interpretation in a shelling of the polytope. The h-vector of a simplicial polytope is also the sequence of Betti numbers of an associated toric variety. In this context it generalizes to nonsimplicial polytopes. However, for nonsimplicial polytopes, we do not have a good combinatorial understanding of the entries of the h-vector. (Chan [10] gives a combinatorial interpretation for the h-vector of cubical polytopes.)

The definition of the (toric) h-vector for general polytopes (and even more generally, for Eulerian posets) first appeared in [16]. Already there Stanley raised the issue of computing the h-vector from a shelling of the polytope. Associated with any shelling, $F_{1}, F_{2}, \ldots, F_{n}$, of a polytope P is a partition of the faces of P into the sets \mathcal{G}_{j} of faces of F_{j} not in $\cup_{i<j} F_{i}$. The h-vector can be decomposed into contributions from each set \mathcal{G}_{j}. When P is simplicial, the set \mathcal{G}_{j} is a single interval $\left[G_{j}, F_{j}\right]$ in the face lattice of P, and the contribution to the h-vector is a single 1 in position $\left|G_{j}\right|$. For nonsimplicial polytopes, the set \mathcal{G}_{j} is not so simple. It is not clear whether the contribution to the h-vector from \mathcal{G}_{j} must be nonnegative, and, if it is, whether it counts something natural. (Tom Braden [8] has announced a positive answer to this question, based on $[1,12]$.) Another issue is the relation of the h-vector of a polytope P to the h-vector of a triangulation of P. This is addressed in $[2,17]$.

A problem in studying nonsimplicial polytopes is the difficulty of generating examples with a broad range of combinatorial types. Bisztriczky [7] discovered the fascinating "ordinary" polytopes, a class of generally nonsimplicial polytopes, which includes as its simplicial members the cyclic polytopes. These polytopes have been studied further in [3, 4, 9]. In particular, in [3], it is shown that ordinary polytopes have surprisingly nice h-vectors, namely, the h-vector is the sum of the h-vector of a cyclic polytope and the shifted h-vector of a lower-dimensional cyclic polytope. These h-vectors were calculated from the flag vectors, and the calculation did not give a combinatorial explanation for the nice form that came out. So we were motivated to find a combinatorial interpretation for these h-vectors, most likely through shellings or triangulations of the polytopes.

This paper is organized as follows. In the second part of this introduction we give the main definitions. The brief Section 2 warms up with the natural triangulation of the multiplex. Section 3 is devoted to showing that the colex order of facets is a shelling of the ordinary polytope. The proof, while laborious, is constructive, explicitly describing the minimal new faces of the polytope as each facet is shelled on. We then turn in Section 4 to h -
vectors of multiplicial polytopes in general, and of the ordinary polytope in particular. Here a "fake simplicial h-vector" arises in the shelling of the ordinary polytope. In Section 5, the triangulation of the multiplex is used to triangulate the boundary of the ordinary polytope. This triangulation is shown to have a shelling compatible with the shelling of Section 3. The shelling and triangulation together explain combinatorially the h-vector of the ordinary polytope.

Finally, a comment about the title of this paper. Bisztriczky named these polytopes "ordinary polytopes" to invoke the idea of ordinary curves. The name is, of course, a bit misleading, as it is applied to a truly extraordinary class of polytopes. We feel that these polytopes are extraordinary because of their special structure, but we hope that they will also turn out to be extraordinary for their usefulness in understanding general convex polytopes.

1.2 Definitions

For common polytope terminology, refer to [18].
The toric h-vector was defined by Stanley for Eulerian posets, including the face lattices of convex polytopes.

Definition 1 ([16]) Let P be a $(d-1)$-dimensional polytopal sphere. The h-vector and g-vector of P are encoded as polynomials: $h(P, x)=\sum_{i=0}^{d} h_{i} x^{d-i}$ and $g(P, x)=\sum_{i=0}^{\lfloor d / 2\rfloor} g_{i} x^{i}$, with the relations $g_{0}=h_{0}$ and $g_{i}=h_{i}-h_{i-1}$ for $1 \leq i \leq d / 2$. Then the h-polynomial and g-polynomial are defined by the recursion

1. $g(\emptyset, x)=h(\emptyset, x)=1$, and
2. $h(P, x)=\sum_{\substack{G \text { face of } P \\ G \neq P}} g(G, x)(x-1)^{d-1-\operatorname{dim} G}$.

It is easy to see that the h-vector depends linearly on the flag vector. In the case of simplicial polytopes, the formulas reduce to the well-known transformation between f-vector and h-vector.

Definition 2 ([18]) Let \mathcal{C} be a pure d-dimensional polytopal complex. If $d=0$, then a shelling of \mathcal{C} is any ordering of the points of \mathcal{C}. If $d>0$, then a shelling of \mathcal{C} is a linear ordering $F_{1}, F_{2}, \ldots, F_{s}$ of the facets of \mathcal{C} such that for $2 \leq j \leq s, F_{j} \cap\left(\cup_{i<j} F_{i}\right)$ is nonempty and is the union of ridges ($(d-1)$-dimensional faces) of \mathcal{C} that form the initial segment of a shelling of F_{j}.

Definition 3 ([2]) A triangulation Δ of a polytopal complex \mathcal{C} is shallow if and only if every face σ of Δ is contained in a face of \mathcal{C} of dimension at most $2 \operatorname{dim} \sigma$.

Theorem 1.1 ([2]) If Δ is a simplicial sphere forming a shallow triangulation of the boundary of the convex d-polytope P, then $h(\Delta, x)=h(P, x)$.

Note: in [2] Theorem 4 gives $h(P, x)=h(\Delta, x)$ for a shallow subdivision Δ of the solid polytope P. The proof goes through for shallow subdivisions of the boundary, because it is based on the uniqueness of low-degree acceptable functions [16], which holds for lower Eulerian posets.

Definition 4 ([6]) A d-dimensional multiplex is a polytope with an ordered list of vertices, $x_{0}, x_{1}, \ldots, x_{n}$, with facets $F_{0}, F_{1}, \ldots, F_{n}$ given by

$$
F_{i}=\operatorname{conv}\left\{x_{i-d+1}, x_{i-d+2}, \ldots, x_{i-1}, x_{i+1}, x_{i+2}, \ldots, x_{i+d-1}\right\}
$$

with the conventions that $x_{i}=x_{0}$ if $i<0$, and $x_{i}=x_{n}$ if $i>n$.
Given an ordered set $V=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, a subset $Y \subseteq V$ is called a Gale subset if between any two elements of $V \backslash Y$ there is an even number of elements of Y. A polytope P with ordered vertex set V is a Gale polytope if the set of vertices of each facet is a Gale subset.

Definition 5 ([7]) An ordinary polytope is a Gale polytope such that each facet is a multiplex with the induced order on the vertices.

Cyclic polytopes can be characterized as the simplicial Gale polytopes. Thus the only simplicial ordinary polytopes are cyclics. In fact, these are the only ordinary polytopes in even dimensions. However, the odd-dimensional, nonsimplicial ordinary polytopes are quite interesting.

We use the following notational conventions. Vertices are generally denoted by integers i rather than by x_{i}. Where it does not cause confusion, a face of a polytope or a triangulation is identified with its vertex set, and $\max F$ denotes the vertex of maximum index of the face F. Interval notation is used to denote sets of consecutive integers, $[a, b]=\{a, a+1, \ldots, b-1, b\}$. If X is a set of integers and c is an integer, write $X+c=\{x+c: x \in X\}$.

2 Triangulating the multiplex

Multiplexes have minimal triangulations that are particularly easy to describe.

Theorem 2.1 Let $M^{d, n}$ be a multiplex with ordered vertices $0,1, \ldots, n$. For $0 \leq i \leq n-d$, let T_{i} be the convex hull of $[i, i+d]$. Then $M^{d, n}$ has a shallow triangulation as the union of the $n-d+1 d$-simplices T_{i}.

Proof: The proof is by induction on n. For $n=d$, the multiplex $M^{d, d}$ is the simplex T_{0} itself. Assume $M^{d, n}$ has a triangulation into simplices T_{i}, $0 \leq i \leq n-d$. Consider the multiplex $M^{d, n+1}$ with ordered vertices 0,1 , $\ldots, n+1$. Then $M^{d, n+1}=\operatorname{conv}\left(M^{d, n} \cup\{n+1\}\right)$, where $n+1$ is a point beyond facet F_{n} of $M^{d, n}$, beneath the facets F_{i} for $0 \leq i \leq n-d+1$, and in the affine hulls of the facets F_{i} for $n-d+2 \leq i \leq n-1$. (See [6].) Thus, $M^{d, n+1}$ is the union of $M^{d, n}$ and $\operatorname{conv}\left(F_{n} \cup\{n+1\}\right)=T_{n+1-d}$, and $M^{d, n} \cap T_{n+1-d}=F_{n}$. By the induction assumption, the simplices T_{i}, with $0 \leq i \leq n+1-d$, form a triangulation of $M^{d, n+1}$.

The dual graph of the triangulation is simply a path. (The dual graph is the graph having a vertex for each d-simplex, and an edge between two vertices if the corresponding d-simplices share a ($d-1$)-face.) The ordering $T_{0}, T_{1}, T_{2}, \ldots, T_{n-d}$ is a shelling of the simplicial complex that triangulates $M^{d, n}$. So the h-vector of the triangulation is $(1, n-d, 0,0, \ldots)$. This is the same as the g-vector of the boundary of the multiplex, which is the h-vector of the solid multiplex. So by [2], the triangulation is shallow.

Note, however, that for $n \geq d+2, M^{d, n}$ is not weakly neighborly (as observed in [4]). This means that it has nonshallow triangulations. This is easy to see because the vertices 0 and n are not contained in a common proper face of $M^{d, n}$.

Consider the induced triangulation of the boundary of $M^{d, n}$. For notational purposes we consider T_{0} and T_{n} separately. All facets of T_{0} except $[1, d]$ are boundary facets of $M^{d, n}$. Write $T_{0 \backslash 0}=[0, d-1]=F_{0}$, and $T_{0 \backslash j}=[0, d] \backslash\{j\}$ for $1 \leq j \leq d-1$. Write $T_{n-d \backslash n}=[n-d+1, n]=F_{n}$, and $T_{n \backslash j}=[n-d, n] \backslash\{j\}$ for $n-d+1 \leq j \leq n-1$. For $1 \leq i \leq n-d-1$, the facets of T_{i} are $T_{i \backslash j}=[i, i+d] \backslash\{j\}$. Two of these facets ($j=i$ and $j=i+d$) intersect the interior of $M^{d, n}$. For $1 \leq j \leq n-1$, the facet F_{j} is triangulated by $T_{i \backslash j}$ for $j-d+1 \leq i \leq j-1$ (and $0 \leq i \leq n-d$). The facet order F_{0}, F_{1}, \ldots, F_{n}, is a shelling of the multiplex $M^{d, n}$. The $(d-1)$-simplices $T_{i \backslash j}$ in the order $T_{0 \backslash 0}, T_{0 \backslash 1}, T_{0 \backslash 2}, T_{1 \backslash 2}, \ldots, T_{n-d-1 \backslash n-2}, T_{n-d \backslash n-2}, T_{n-d \backslash n-1}, T_{n-d+1 \backslash n}$ (increasing order of j and, for each j, increasing order of i), form a shelling of the triangulated boundary of $M^{d, n}$.

3 Shelling the ordinary polytope

Shelling is used to calculate the h-vector, and hence the f-vector of simplicial complexes (in particular, the boundaries of simplicial polytopes). This is possible because (1) the h-vector has a simple expression in terms of the f-vector and vice versa; (2) in a shelling of a simplicial complex, among the faces added to the subcomplex as a new facet is shelled on, there is a unique minimal face; (3) the interval from this minimal new face to the facet is a Boolean algebra; and (4) the numbers of new faces given by (3) match the coefficients in the f-vector $/ h$-vector formula. These conditions all fail for shellings of arbitrary polytopes. However, some hold for certain shellings of ordinary polytopes.

As mentioned earlier, noncyclic ordinary polytopes exist only in odd dimensions. Furthermore, three-dimensional ordinary polytopes are quite different combinatorially from those in higher dimensions. We thus restrict our attention to ordinary polytopes of odd dimension at least five. It turns out that these are classified by the vertex figure of the first vertex.

Theorem 3.1 ([7, 9]) For each choice of integers $n \geq k \geq d=2 m+1 \geq 5$, there is a unique combinatorial type of ordinary polytope $P=P^{d, k, n}$ such that the dimension of P is d, P has $n+1$ vertices, and the first vertex of P is on exactly k edges. The vertex figure of the first vertex of $P^{d, k, n}$ is the cyclic ($d-1$)-polytope with k vertices.

We use the following description of the facets of $P^{d, k, n}$ by Dinh. For any subset $X \subseteq \mathbf{Z}$, let $\operatorname{ret}_{n}(X)$ (the "retraction" of X) be the set obtained from X by replacing every negative element by 0 and replacing every element greater than n by n.

Theorem 3.2 ([9]) Let \mathcal{X}_{n} be the collection of sets

$$
\begin{equation*}
X=[i, i+2 r-1] \cup Y \cup[i+k, i+k+2 r-1], \tag{1}
\end{equation*}
$$

where $i \in \mathbf{Z}, 1 \leq r \leq m, Y$ is a paired $(d-2 r-1)$-element subset of $[i+2 r+1, i+k-2]$, and \mid ret $_{n}(X) \mid \geq d$. The set of facets of $P^{d, k, n}$ is $\mathcal{F}\left(P^{d, k, n}\right)=\left\{\operatorname{ret}_{n}(X): X \in \mathcal{X}_{n}\right\}$,

It is easy to check that when $n=k$, $\left|\operatorname{ret}_{n}(X)\right|=d$ for all $X \in \mathcal{X}_{n}$, and that $\operatorname{ret}_{n}\left(\mathcal{X}_{n}\right)$ is the set of d-element Gale subsets of $[0, k]$, that is, the facets of the cyclic polytope $P^{d, k, k}$.

Note that $\mathcal{X}_{n-1} \subseteq \mathcal{X}_{n}$. We wish to describe $\mathcal{F}\left(P^{d, k, n}\right)$ in terms of $\mathcal{F}\left(P^{d, k, n-1}\right)$; for this we need the following shift operations. If $F=\operatorname{ret}_{n-1}(X) \in$
$\mathcal{F}\left(P^{d, k, n-1}\right)$, let the right-shift of F be $\operatorname{rsh}(F)=\operatorname{ret}_{n}(X+1)$. Note that $\operatorname{rsh}(F)$ may or may not contain 0 . In either case, $\operatorname{rsh}(F) \cap[1, n]=F+1$, so $|\operatorname{rsh}(F)| \geq|F| \geq d$, If $F=\operatorname{ret}_{n}(X) \in \mathcal{F}\left(P^{d, k, n}\right)$, let the left-shift of F be $\operatorname{lsh}(F)=\operatorname{ret}_{n-1}(X-1)$. Note that $\operatorname{lsh}(F) \backslash\{0\}=(F-1) \cap[1, n] ; \operatorname{lsh}(F)$ contains 0 if either 0 or 1 is in F.

Lemma 3.3 If $n \geq k+1$ and $F \in \mathcal{F}\left(P^{d, k, n}\right)$ with $\max F \geq k$, then $\operatorname{lsh}(\mathrm{F}) \in$ $\mathcal{F}\left(\mathrm{P}^{\mathrm{d}, \mathrm{k}, \mathrm{n}-1}\right)$.

Proof: Let $F=\operatorname{ret}_{n}(X)$, with $X=[i, i+2 r-1] \cup Y \cup[i+k, i+k+2 r-1]$. Then $X-1$ also has the form of equation (1) (for $i-1$). The set $\operatorname{lsh}(F)$ is the vertex set of a facet of $P^{d, k, n-1}$ as long as $|\operatorname{ssh}(F)| \geq d$. We check this in three cases.
Case 1. If $k \leq i+k+2 r-1 \leq n$, then $i+2 r-1 \geq 0$, so $Y \subseteq[i+2 r+1, i+$ $k-2] \subseteq[2, i+k-2]$. Then

$$
\operatorname{lsh}(F) \supseteq \max \{i+2 r-2,0\} \cup(Y-1) \cup[i+k-1, i+k+2 r-2],
$$

so $|\operatorname{ssh}(F)| \geq 1+(d-2 r-1)+2 r=d$.
Case 2. If $i+k \geq n$, then $i \geq n-k \geq 1$. Also, $|F| \geq d$ implies $\max Y \leq n-1$. So

$$
\operatorname{lsh}(F)=[i-1, i+2 r-2] \cup(Y-1) \cup\{n-1\},
$$

so $|\operatorname{shh}(F)|=2 r+(d-2 r-1)+1=d$.
Case 3. If $i+k<n<i+k+2 r-1$, then $i+2 r-1 \geq n-k \geq 1$, and

$$
F=[\max \{0, i\}, i+2 r-1] \cup Y \cup[i+k, n],
$$

so

$$
\begin{aligned}
|F| & =(i+2 r-\max \{0, i\})+(d-2 r-1)+(n-i-k+1) \\
& =d+n-k-\max \{i, 0\} \geq d+1 .
\end{aligned}
$$

Then $|\operatorname{lsh}(F)| \geq|F|-1 \geq d$.
Thus, $\operatorname{lsh}(F)$ is a facet of $P^{d, k, n-1}$.
Identify each facet of the ordinary polytope $P^{d, k, n}$ with its ordered list of vertices. Then order the facets of $P^{d, k, n}$ in colex order. This means, if $F=i_{1} i_{2} \ldots i_{p}$ and $G=j_{1} j_{2} \ldots j_{q}$, then $F \prec_{c} G$ if and only if for some $t \geq 0$, $i_{p-t}<j_{q-t}$ while for $0 \leq s<t, i_{p-s}=j_{q-s}$.

Lemma 3.4 If $n \geq k+1$ and F_{1} and F_{2} are facets of $P^{d, k, n}$ with $\max F_{i} \geq k$, then $F_{1} \prec_{c} F_{2}$ implies lsh $\left(F_{1}\right) \prec_{c} \operatorname{lsh}\left(F_{2}\right)$.

Proof: Suppose $F_{1} \prec_{c} F_{2}$, and let q be the maximum vertex in F_{2} not in F_{1}. Then $\operatorname{lsh}\left(F_{1}\right) \prec_{c} \operatorname{lsh}\left(F_{2}\right)$ as long as $q \geq 2$, for in that case $q-1 \in$ $\operatorname{lsh}\left(F_{2}\right) \backslash \operatorname{lsh}\left(F_{1}\right)$, while $[q, n-1] \cap \operatorname{lsh}\left(F_{1}\right)=[q, n-1] \cap \operatorname{lsh}\left(F_{2}\right)$. (If $q=1$, then q shifts to 0 in $\operatorname{lsh}\left(F_{2}\right)$, but 0 may be in $\operatorname{lsh}\left(F_{1}\right)$ as a shift of a smaller element.) So we prove $q \geq 2$. Write

$$
F_{2}=\operatorname{ret}_{n}([i, i+2 r-1] \cup Y \cup[i+k, i+k+2 r-1])
$$

and

$$
F_{1}=\operatorname{ret}_{n}\left(\left[i^{\prime}, i^{\prime}+2 r^{\prime}-1\right] \cup Y^{\prime} \cup\left[i^{\prime}+k, i^{\prime}+k+2 r^{\prime}-1\right]\right) .
$$

Since $\max F_{2} \geq k, i+2 r-1 \geq 0$, so $Y \cup[i+k, i+k+2 r-1] \subseteq$ [2, n], Thus, if $q \in Y \cup[i+k, i+k+2 r-1]$, then $q \geq 2$. Otherwise $Y \cup[i+k, i+k+2 r-1])=Y^{\prime} \cup\left[i^{\prime}+k, i^{\prime}+k+2 r^{\prime}-1\right]$), but $Y \neq Y^{\prime}$. This can only happen when $Y \cup[i+k, i+k+2 r-1])$ is an interval; in this case $i+k+2 r-1 \geq n+1$. Then $q=i+2 r-1=(i+k+2 r-1)-k \geq n+1-k \geq 2$.

Proposition 3.5 Let $n \geq k+1$. The facets of $P^{d, k, n}$ are

$$
\begin{aligned}
\{F: & \left.F \in \mathcal{F}\left(P^{d, k, n-1}\right) \text { and } \max F \leq n-2\right\} \\
& \cup\left\{r s h(F): F \in \mathcal{F}\left(P^{d, k, n-1}\right) \text { and } \max F \geq n-2\right\} .
\end{aligned}
$$

Proof: If max $X \leq n-2$, then $\operatorname{ret}_{n}(X)=\operatorname{ret}_{n-1}(X)$; in this case, letting $F=\operatorname{ret}_{n}(X), F \in \mathcal{F}\left(P^{d, k, n-1}\right)$ if and only if $F \in \mathcal{F}\left(P^{d, k, n}\right)$. If $F \in \mathcal{F}\left(P^{d, k, n-1}\right)$ with $\max F \geq n-2$, then $\operatorname{rsh}(F) \in \mathcal{F}\left(P^{d, k, n}\right)$ with $\max \operatorname{rsh}(F) \geq n-1$. Now suppose that $G=\operatorname{ret}_{n}(X) \in \mathcal{F}\left(P^{d, k, n}\right)$ with $\max G \geq n-1$. Let $F=1 \operatorname{sh}(G)=\operatorname{ret}_{n-1}(X-1) \in \mathcal{F}\left(P^{d, k, n-1}\right)$; then $\max F \geq n-2$. By definition, $\operatorname{rsh}(F)=\operatorname{ret}_{n}((X-1)+1)=\operatorname{ret}_{n}(X)=G$.

Theorem 3.6 Let $F_{1}, F_{2}, \ldots, F_{v}$ be the facets of $P^{d, k, n}$ in colex order. Then

1. $F_{1}, F_{2}, \ldots, F_{v}$ is a shelling of $P^{d, k, n}$.
2. For each j there is a unique minimal face G_{j} of F_{j} not contained in $\cup_{i=1}^{j-1} F_{i}$.
3. For each $j, 2 \leq j \leq v-1, G_{j}$ contains the vertex of F_{j} of maximum index, and is contained in the $d-1$ highest vertices of F_{j}.
4. For each j, the interval $\left[G_{j}, F_{j}\right]$ is a Boolean lattice.

Note that this theorem is not saying that the faces of $P^{d, k, n}$ in the interval $\left[G_{j}, F_{j}\right]$ are all simplices.
Proof: We construct explicitly the faces G_{j} in terms of F_{j}. The reader may wish to refer to the example that follows the proof.

Cyclic polytopes. We start with the cyclic polytopes. (For the cyclics, the theorem is generally known, or at least a shorter proof based on [5] is possible, but we will need the description of the faces G_{j} later.)

Let $F_{1}, F_{2}, \ldots, F_{v}$ be the facets, in colex order, of $P^{d, k, k}$, the cyclic d-polytope with vertex set $[0, k]$. Each facet F_{j} can be written as $F_{j}=$ $I_{j}^{0} \cup I_{j}^{1} \cup I_{j}^{2} \cup \cdots \cup I_{j}^{p} \cup I_{j}^{k}$, where I_{j}^{0} is the interval of F_{j} containing 0, if $0 \in F_{j}$, and $I_{j}^{0}=\emptyset$ otherwise; I_{j}^{k} is the interval of F_{j} containing k, if $k \in F_{j}$, and $I_{j}^{k}=\emptyset$ otherwise; and the I_{j}^{ℓ} are the other (even) intervals of F_{j} with the elements of I_{j}^{ℓ} preceding the elements of $I_{j}^{\ell+1}$. (For example, in $P^{7,9,9}, F_{6}=\{0,1,2,4,5,7,8\}, I_{6}^{0}=\{0,1,2\}, I_{6}^{1}=\{4,5\}, I_{6}^{2}=\{7,8\}$, and $\left.I_{6}^{9}=\emptyset.\right)$ For the interval $[a, b]$, write $E([a, b])$ for the integers in the even positions in the interval, that is, $E([a, b])=[a, b] \cap\{a+2 i+1: i \in \mathbf{N}\}$. Let $G_{j}=\cup_{\ell=1}^{p} E\left(I_{j}^{\ell}\right) \cup I_{j}^{k}$. Since $I_{j}^{0}=F_{j}$ if and only if $j=1, G_{1}=\emptyset$, and for all $j>1, G_{j}$ contains the maximum vertex of F_{j}. Since F_{j} is a simplex, [G_{j}, F_{j}] is a Boolean lattice.

To show that $F_{1}, F_{2}, \ldots, F_{v}$ is a shelling of $P^{d, k, k}$ we show that G_{j} is not in a facet before F_{j} and that every ridge of $P^{d, k, k}$ in F_{j} that does not contain G_{j} is contained in a previous facet. For $j>0$ the face G_{j} consists of the right end-set I_{j}^{k} (if nonempty) and the set $\cup_{j=1}^{p} E\left(I_{j}^{\ell}\right)$ of singletons. Note that G_{j} satisfies condition 3 of the theorem (which here just says that the lowest vertex of F_{j} is not in G_{j}), unless $j=v$, in which case $G_{v}=F_{v}$. Any facet F of $P^{d, k, k}$ containing G_{j} must satisfy Gale's evenness condition and therefore must contain an integer adjacent to each element of $\cup_{j=1}^{p} E\left(I_{j}^{\ell}\right)$. If any element of the form $\max I_{j}^{\ell}+1$ is in F, then F occurs after F_{j} in colex order. This implies that any F_{i} previous to F_{j} and containing G_{j} also contains $\cup_{\ell=1}^{p} I_{j}^{\ell} \cup I_{j}^{k}$. But F_{j} is the first facet in colex order that contains $\cup_{\ell=1}^{p} I_{j}^{\ell} \cup I_{j}^{k}$. So G_{j} is not in a facet before F_{j}.

Now let $g \in G_{j}$; we wish to show that $F_{j} \backslash\{g\}$ is in a previous facet. If $g \in E\left(I_{j}^{\ell}\right)$ for $\ell>0$, let $F=F_{j} \backslash\{g\} \cup\left\{\min I_{j}^{\ell}-1\right\}$. Then F satisfies Gale's evenness condition and is a facet before F_{j}. Otherwise $g \in I_{j}^{k} \backslash E\left(I_{j}^{k}\right)$; in this case let $F=F_{j} \backslash\{g\} \cup\left\{\max I_{j}^{0}+1\right\}$ (where we let $\max I_{j}^{0}+1=0$ if $I_{j}^{0}=\emptyset$). Again F satisfies Gale's evenness condition and is a facet before F_{j}.

Thus the colex order of facets is a shelling order for the cyclic polytope $P^{d, k, k}$, and we have an explicit description for the minimal new face G_{j} as F_{j} is shelled on.

General ordinary. Now we prove the theorem for general $P^{d, k, n}$ by induction on $n \geq k$, for fixed k. Among the facets of $P^{d, k, n}$, first in colex order are those with maximum vertex at most $n-2$. These are also the first facets in colex order of $P^{d, k, n-1}$. Thus the induction hypothesis gives us that this initial segment is a partial shelling of $P^{d, k, n}$, and that assertions $2-4$ hold for these facets.

Later facets. It remains to consider the facets of $P^{d, k, n}$ ending in $n-1$ or n. These facets come from shifting facets of $P^{d, k, n-1}$ ending in $n-2$ or $n-1$. Our strategy here will be to prove statement 2 of the theorem for these facets. The intersection of F_{j} with $\cup_{i=1}^{j-1} F_{i}$ is then the antistar of G_{j} in F_{j}, and so it is the union of $(d-2)$-faces that form an initial segment of a shelling of F_{j}. This will prove that the colex order $F_{1}, F_{2}, \ldots, F_{v}$ is a shelling of $P^{d, k, n}$.

Note that there is nothing to show for the last facet of $P^{d, k, n}$ in colex order. It is $F_{v}=[n-d+1, n]$, and is the only facet (other than the first) whose vertex set forms a single interval. Assume from now on that j is fixed, with $j \leq v-1$. Later we will describe recursively the minimal new face G_{j} as F_{j} is shelled on. It will always be the case that $\max F_{j} \in G_{j}$. We will prove that G_{j} is truly a new face (is not contained in a previous facet), and that every ridge not containing all of G_{j} is contained in a previous facet.

Ridges not containing the last vertex. It is convenient to start by showing that every ridge of $P^{d, k, n}$ contained in F_{j} and not containing max F_{j} is contained in an earlier facet. This case does not use the recursion needed for the other parts of the proof. Write

$$
X=[i, i+2 r-1] \cup Y \cup[i+k, i+k+2 r-1]
$$

and $F_{j}=\operatorname{ret}_{n}(X)=\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$ with $0 \leq z_{1}<z_{2}<\cdots<z_{p} \leq n$. The facet F_{j} is a $(d-1)$-multiplex, so its facets are of the form

$$
F_{j}\left(\hat{z}_{t}\right)=\left\{z_{\ell}: 1 \leq \ell \leq p, 0<|\ell-t| \leq d-2\right\}
$$

for $2 \leq t \leq p-1, F_{j}\left(\hat{z}_{1}\right)=\left\{z_{1}, z_{2}, \ldots, z_{d-1}\right\}$, and $F_{j}\left(\hat{z}_{p}\right)=\left\{z_{p-d+2}, \ldots, z_{p-1}, z_{p}\right\}$. If $F_{j}\left(\hat{z}_{t}\right)$ does not contain $\max F_{j}=z_{p}$, then $t \leq p-d+1$ and this implies $i \leq z_{t} \leq i+2 r-1$. Consider such a z_{t}.

The first ridge. For $t=1$, there are three cases to consider.
Case 1. Suppose $z_{1} \geq 1$. Then $F_{j}\left(\hat{z}_{1}\right)=[i, i+2 r-1] \cup Y$. Let I be the right-most interval of $F_{j}\left(\hat{z}_{1}\right)$. Let $Z=(I-k) \cup F_{j}\left(\hat{z}_{1}\right)$, and $F=\operatorname{ret}_{n}(Z)$.

Since $i \geq 1$ and $\max F_{j}\left(\hat{z}_{1}\right) \leq i+k-2$, the interval $I-k$ contributes at least one new element to F, so $|F| \geq d$.
Case 2. Suppose $z_{1}=0$ and the right-most interval of $F_{j}\left(\hat{z}_{1}\right)$ is odd. In this case the left-most interval of F_{j} must also be odd, so $i<0$, and $F_{j}\left(\hat{z}_{1}\right)$ contains $i+k$ but not $i+k-1$. Let $F=F_{j}\left(\hat{z}_{1}\right) \cup\{i+k-1\}$.
Case 3. Suppose $z_{1}=0$ and the right-most interval of $F_{j}\left(\hat{z}_{1}\right)$ is even (and then so is the left-most interval). Then $F_{j}\left(\hat{z}_{1}\right)=[0, i+2 r-1] \cup Y \cup[i+k, k-1]$ (where the last interval is empty if $i=0$). Let

$$
F=F_{j}\left(\hat{z}_{1}\right) \cup\{i+2 r\}=\{0\} \cup[1, i+2 r] \cup Y \cup[i+k, k-1] .
$$

(When $i=0$ and $r=(d-1) / 2$, this gives $F=[0, d-1]$.) In all cases F is a facet of $P^{d, k, n}$ containing $F_{j}\left(\hat{z}_{1}\right)$. It does not contain $\max F_{j}$, so $F \prec_{c} F_{j}$.

Deleting a later vertex. Now assume $2 \leq t \leq p-d+1$; then $z_{t} \geq$ $\max \{i+1,1\}$. Here

$$
F_{j}\left(\hat{z}_{t}\right)=\left[\max \{i, 0\}, z_{t}-1\right] \cup\left[z_{t+1}, i+2 r-1\right] \cup Y \cup\left[i+k, z_{t}-1+k\right],
$$

and $\left|F_{j}\left(\hat{z}_{t}\right)\right|=z_{t}-\max \{i, 0\}+d-2 \geq d-1$. Also note that $z_{t}-1+k$ is the $(d-2)$ nd element of $\left\{z_{1}, z_{2}, \ldots, z_{p}\right\}$ after z_{t}, so $z_{t}-1+k=z_{t+d-2}<$ $z_{p}=\max F_{j}$.
Case 1. If $z_{t}-i$ is even, let $F=F_{j}\left(\hat{z}_{t}\right) \cup\{i+2 r\}$. Then $F=\operatorname{ret}_{n}(Z)$, where

$$
Z=\left[i, z_{t}-1\right] \cup\left[z_{t}+1, i+2 r\right] \cup Y \cup\left[i+k, z_{t}-1+k\right],
$$

and $|F| \geq d$.
Case 2. If $z_{t}-i$ is odd and $\max ([i, i+2 r-1] \cup Y)<i+k-2$, let $F=\operatorname{ret}_{n}(Z)$, where

$$
Z=\left[i-1, z_{t}-1\right] \cup\left[z_{t}+1, i+2 r-1\right] \cup Y \cup\left[i+k-1, z_{t}-1+k\right] .
$$

Then $F \supseteq F_{j}\left(\hat{z}_{t}\right) \cup\{i+k-1\}$, so $|F| \geq d$.
Case 3. Finally, suppose $z_{t}-i$ is odd and $\max Y=i+k-2$. Let $[q, i+k-2]$ be the right-most interval of Y, and let $F=\operatorname{ret}_{n}(Z)$, where
$Z=\left[q-k, z_{t}-1\right] \cup\left[z_{t}+1, i+2 r-1\right] \cup(Y \backslash[q, i+k-2]) \cup\left[q, z_{t}-1+k\right]$.
Then $F \supseteq F_{j}\left(\hat{z}_{t}\right) \cup\{i+k-1\}$, so $|F| \geq d$.
In all cases, F is a facet of $P^{d, k, n}$ containing $F_{j}\left(\hat{z}_{t}\right)$ and $\max F_{j} \notin F$, so F occurs before F_{j} in colex order.

Determining the minimal new face. We now describe the faces G_{j} recursively. (We are still assuming that $\max F_{j} \geq n-1$.) Let G be the face
of $\operatorname{lsh}\left(F_{j}\right)$ that is the minimal new face when $\operatorname{lsh}\left(F_{j}\right)$ is shelled on, in the colex shelling of the polytope $P^{d, k, n-1}$. Let $G_{j}=G+1$; this is a subset of the last $d-1$ vertices of F_{j} and contains $\max F_{j}$. By [4, Theorem 2.6] and [6], G_{j} is a face of F_{j}. For any facet F_{i} of $P^{d, k, n}, G_{j} \subseteq F_{i}$ if and only if $G \subseteq \operatorname{lsh}\left(F_{i}\right)$. So by the induction hypothesis, G_{j} is not contained in a facet occurring before F_{j} in colex order.

Ridges in previous facets. It remains to show that any ridge of $P^{d, k, n}$ contained in F_{j} but not containing all of G_{j} is contained in a facet prior to F_{j}. Note that we have already dealt with those ridges not containing max F_{j}. Now let $g \in G, g_{j}=g+1 \in G_{j}$, and assume $g_{j} \neq \max F_{j}$. The only ridge of $P^{d, k, n}$ contained in F_{j}, containing max F_{j}, and not containing g_{j} is $F_{j}\left(\hat{g}_{j}\right)$.

Let H be the unique ridge of $P^{d, k, n-1}$ in $\operatorname{lsh}\left(F_{j}\right)$ containing $\max \left(\operatorname{lsh}\left(F_{j}\right)\right)$, but not containing g. By the induction hypothesis, H is contained in a facet F of $P^{d, k, n-1}$ occurring before $\operatorname{lsh}\left(F_{j}\right)$ in colex order. Suppose $F_{j}\left(\hat{g}_{j}\right)$ is contained in a facet F_{ℓ} of $P^{d, k, n}$ occurring after F_{j} in colex order. Then H is contained in $\operatorname{lsh}\left(F_{\ell}\right)$. Thus the ridge H of $P^{d, k, n-1}$ is contained in three different facets: F (occurring before $\operatorname{lsh}\left(F_{j}\right)$ in colex order), $\operatorname{lsh}\left(F_{j}\right)$, and $\operatorname{lsh}\left(F_{\ell}\right)$ (occurring after $\operatorname{lsh}\left(F_{j}\right)$ in colex order). This contradiction shows that the ridge $F_{j}\left(\hat{g}_{j}\right)$ can only be contained in a facet of $P^{d, k, n}$ occurring before F_{j} in colex order.

Boolean intervals. Finally to verify assertion 4 of the theorem, observe that every facet F_{j} is a $(d-1)$-dimensional multiplex. The face G_{j} of F_{j} contains the maximum vertex u of F_{j}. The vertex figure of the maximum vertex in any multiplex is a simplex [6]. The interval $\left[G_{j}, F_{j}\right]$ is an interval in $\left[u, F_{j}\right]$, which is the face lattice of a simplex, so $\left[G_{j}, F_{j}\right]$ is a Boolean lattice.

A nonrecursive description of the faces G_{j}, generalizing that for the cyclic case in the proof, is as follows. Write the facet F_{j} as a disjoint union, $F_{j}=A_{j}^{0} \cup I_{j}^{1} \cup I_{j}^{2} \cup \cdots \cup I_{j}^{p} \cup I_{j}^{n}$, where I_{j}^{n} is the interval of F_{j} containing n if $n \in F_{j}$, and $I_{j}^{n}=\emptyset$ otherwise; the $I_{j}^{\ell}(1 \leq \ell \leq p)$ are even intervals of F_{j} written in increasing order; and A_{j}^{0} is

- the interval containing 0 , if $\max F_{j} \leq k-1$;
- the union of the interval containing $\max F_{j}-k$ and the interval containing $\max F_{j}-k+2$ (if the latter exists), if $k \leq \max F_{j} \leq n-1$;
- the interval containing $n-k$, if $\max F_{j}=n$ and $n-k \in F_{j}$;
- \emptyset, if $\max F_{j}=n$ and $n-k \notin F_{j}$.

Then $G_{j}=\cup_{\ell=1}^{p} E\left(I_{j}^{\ell}\right) \cup I_{j}^{n}$. The vertices of G_{j} are among the last d vertices of F_{j} and so are affinely independent [6]; thus G_{j} is a simplex.

Example. Table 1 gives the faces F_{j} and G_{j} for the colex shelling of the ordinary polytope $P^{5,6,8}$.

3	F_{j}	G_{j}	j	F_{j}	G_{j}
1	01234	\emptyset	9	23568	68
2	01245	5	10	34568	468
3	02345	35	11	123478	78
4	02356	6	12	124578	578
5	03456	46	13	0123678	678
6	013467	7	14	34678	4678
7	014567	57	15	0125678	5678
8	23458	8	16	45678	45678

Table 1: Shelling of $P^{5,6,8}$
Let us look at what happens when facet F_{13} is shelled on. The ridges of $P^{5,6,8}$ contained in F_{13} are $0123,0236,01367,012678,12378,2368$, and 3678. The first ridge, 0123 , is contained in $F_{1}=01234$. The ridge 0236 is $F_{13}\left(\hat{z}_{2}\right)=F_{13}(\hat{1})$, and $\max ([i, i+2 r-1] \cup Y)=3<4=i+k-2$, so we find that 0236 is contained in $F_{4}=02356$. The ridge 01367 is $F_{13}\left(\hat{z}_{3}\right)=F_{13}(\hat{2})$, so we find that 01367 is contained in $F_{6}=013467$. This facet $F_{13}=0123678$ is shifted from the facet 012567 of $P^{5,6,7}$, which in turn is shifted from the facet 01456 of the cyclic polytope $P^{5,6,6}$. When 01456 occurs in the shelling of the cyclic polytope, its minimal new face is its right interval, 456. In $P^{5,6,8}$, then, the minimal new face when F_{13} is shelled on is 678 . The other ridges of F_{13} not containing 678 are 12378 and 2368 . The interval [G_{13}, F_{13}] contains the triangle 678 , the 3 -simplex 3678 , the 3 -multiplex 012678 , and F_{13} itself (which is a pyramid over 012678).

Note that for the multiplex, $M^{d, n}=P^{d, d, n}$, this theorem gives a shelling different from the one mentioned in Section 2. In the standard notation for the facets of the multiplex (see Definition 4), the colex shelling order is F_{0}, $F_{1}, \ldots, F_{n-d}, F_{n-1}, F_{n-2}, \ldots, F_{n-d+1}, F_{n}$. The statements of this section hold also for even-dimensional multiplexes.

4 The h-vector from the shelling

The h-vector of a simplicial polytope can be obtained easily from any shelling of the polytope. For P a simplicial polytope, and $\cup\left[G_{j}, F_{j}\right]$ the partition of a face lattice of P arising from a shelling, $h(P, x)=\sum_{j} x^{d-\left|G_{j}\right|}$. For general polytopes, the (toric) h-vector can also be decomposed according to the shelling partition. For a shelling, $F_{1}, F_{2}, \ldots, F_{n}$, of a polytope P, write \mathcal{G}_{j} for the set of faces of F_{j} not in $\cup_{i<j} F_{i}$. Then $h(P, x)=\sum_{j=1}^{n} h\left(\mathcal{G}_{j}, x\right)$, where $h\left(\mathcal{G}_{j}, x\right)=\sum_{G \in \mathcal{G}_{j}} g(G, x)(x-1)^{d-1-\operatorname{dim} G}$. However, in general we do not know that the coefficients of $h\left(\mathcal{G}_{j}, x\right)$ count anything natural, nor even that they are nonnegative. Stanley raised this issue in [16, Section 6]. It has apparently been settled by Tom Braden [8].

We turn now to h-vectors of ordinary polytopes. In [3] we used the flag vector of the ordinary polytope to compute its toric h-vector.

Theorem 4.1 ([3]) For $n \geq k \geq d=2 m+1 \geq 5$ and $1 \leq i \leq m$,

$$
h_{i}\left(P^{d, k, n}\right)=\binom{k-d+i}{i}+(n-k)\binom{k-d+i-1}{i-1} .
$$

We did not understand why the h-vector turned out to have such a nice form. Here we show how the h-vector can be computed from the colex shelling. Properties 2 and 4 of Theorem 3.6 are critical.

In [3] we showed that the flag vector of a multiplicial polytope depends only on the f-vector. However, for our purposes here it is more useful to write the h-vector in terms of the f-vector and the flag vector entries of the form $f_{0 i}$. We introduce a modified f-vector. Let $\bar{f}_{-1}=f_{-1}=1, \bar{f}_{0}=f_{0}$, and $\bar{f}_{d-1}=f_{d-1}+\left(f_{0, d-1}-d f_{d-1}\right)$; and for $1 \leq j \leq d-2$, let

$$
\bar{f}_{j}=f_{j}+\left(f_{0, j+1}-(j+2) f_{j+1}\right)+\left(f_{0, j}-(j+1) f_{j}\right) .
$$

(Thus, $\left.\bar{f}_{1}=f_{1}+\left(f_{02}-3 f_{2}\right)+\left(f_{01}-2 f_{1}\right)=f_{1}+\left(f_{02}-3 f_{2}\right).\right)$
Theorem 4.2 If P is a multiplicial d-polytope, then

$$
h(P, x)=\sum_{i=0}^{d} h_{i}(P) x^{d-i}=\sum_{i=0}^{d} \bar{f}_{i-1}(P)(x-1)^{d-i} .
$$

Proof: As observed in the proof of Theorem 2.1, the g-polynomial of an e-dimensional multiplex M with $n+1$ vertices is $g(M, x)=1+(n-e) x$. So
for a multiplicial d-polytope P,

$$
\begin{aligned}
h(P, x)= & \sum_{\substack{G \text { face of } P \\
G \neq P}} g(G, x)(x-1)^{d-1-\operatorname{dim} G} \\
= & \sum_{\substack{G \text { face of } P \\
G \neq P}}\left(1+\left(f_{0}(G)-1-\operatorname{dim} G\right) x\right)(x-1)^{d-1-\operatorname{dim} G} \\
= & \sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}+\sum_{i=1}^{d-1}\left(f_{0 i}-(i+1) f_{i}\right) x(x-1)^{d-1-i} \\
= & \sum_{i=0}^{d} f_{i-1}(x-1)^{d-i}+\sum_{i=1}^{d-1}\left(f_{0 i}-(i+1) f_{i}\right)\left[(x-1)^{d-i}+(x-1)^{d-1-i}\right] \\
= & (x-1)^{d}+f_{0}(x-1)^{d-1} \\
& +\sum_{i=2}^{d-1}\left(f_{i-1}+\left(f_{0 i}-(i+1) f_{i}\right)+\left(f_{0, i-1}-i f_{i-1}\right)\right)(x-1)^{d-i} \\
& +\left(f_{d-1}+\left(f_{0, d-1}-d f_{d-1}\right)\right) \\
= & \sum_{i=0}^{d} \bar{f}_{i-1}(P)(x-1)^{d-i} .
\end{aligned}
$$

Simplicial polytopes are a special case of multiplicial polytopes. Clearly, when P is simplicial, $\bar{f}(P)=f(P)$, and we recover the definition of the simplicial h-vector in terms of the f-vector. The multiplicial h-vector formula can be thought of as breaking into two parts: one involving the f-vector, and matching the simplicial h-vector formula; the other involving the "excess vertex counts," $f_{0, j}-(j+1) f_{j}$. In the simplicial case the sum of the entries in the h-vector is the number of facets. For multiplicial polytopes $\sum_{i=0}^{d} h_{i}(P)=\bar{f}_{d-1}(P)=f_{d-1}+\left(f_{0, d-1}-d f_{d-1}\right)$.

In general, applying the simplicial h-formula to a nonsimplicial f-vector produces a vector with no (known) combinatorial interpretation. This vector is neither symmetric nor nonnegative in general. We will see that in the case of ordinary polytopes something special happens. Write $h^{\prime}(P, x)$ for the h polynomial that P would have if it were simplicial.

Definition 6 The h^{\prime}-polynomial of a multiplicial d-polyopte P is given by

$$
h^{\prime}(P, x)=\sum_{i=0}^{d} h_{i}^{\prime}(P) x^{d-i}=\sum_{i=0}^{d} f_{i-1}(P)(x-1)^{d-i} .
$$

(The h^{\prime}-vector is then the vector of coefficients of the h^{\prime}-polynomial.)
Theorem 4.3 Let $P^{d, k, n}$ be an ordinary polytope. Let $\cup_{j=1}^{v}\left[G_{j}, F_{j}\right]$ be the partition of the face lattice of $P^{d, k, n}$ associated with the colex shelling of $P^{d, k, n}$. Then for all $i, 0 \leq i \leq d, h^{\prime}\left(P^{d, k, n}, x\right)=\sum_{j=1}^{v} x^{d-\left|G_{j}\right|}$.

Furthermore, if $C^{d, k}$ is the cyclic d-polytope with $k+1$ vertices, then for all $i, 0 \leq i \leq d, h_{i}^{\prime}\left(P^{d, k, n}\right) \geq h_{i}\left(C^{d, k}\right)$, with equality for $i>d / 2$.

Proof: Direct evaluation gives $h_{0}^{\prime}(P)=h_{d}^{\prime}(P)=1$. Let $F_{1}, F_{2}, \ldots, F_{v}$ be the colex shelling of $P^{d, k, n}$. By Theorem 3.6, part 2, the set of faces of $P^{d, k, n}$ has a partition as $\cup_{j=1}^{v}\left[G_{j}, F_{j}\right]$. By Theorem 3.6, part 4, the interval $\left[G_{j}, F_{j}\right]$ has exactly $\binom{d-1-\operatorname{dim} G_{j}}{\ell-\operatorname{dim} G_{j}}$ faces of dimension ℓ for $\operatorname{dim} G_{j} \leq \ell \leq d-1$. Let $k_{i}=\left|\left\{j: \operatorname{dim} G_{j}=i-1\right\}\right|$. Then $f_{\ell}=\sum_{i=0}^{l+1}\binom{d-i}{\ell-i+1} k_{i}$. These are the (invertible) equations that give f_{ℓ} in terms of h_{i}^{\prime}, so for all $i, h_{i}^{\prime}=k_{i}=\mid\{j$: $\left.\operatorname{dim} G_{j}=i-1\right\} \mid$.

The second part we prove by induction on $n \geq k$. We will also need the following statement, which we prove in the course of the induction as well. If F_{j} is a facet of $P^{d, k, n}$ with $\max F_{j}=n-2$, then $\left|G_{j}\right| \leq(d-1) / 2$. The base case of the induction is the cyclic polytope, $C^{d, k}=P^{d, k, k}$. We need to show that if F_{j} is a facet of $C^{d, k}$ with $\max F_{j}=k-2$, then $\left|G_{j}\right| \leq(d-1) / 2$. This follows from the description of G_{j} in the proof of Theorem 3.6, because in this case, in $F_{j}=I_{j}^{0} \cup I_{j}^{1} \cup I_{j}^{2} \cup \cdots \cup I_{j}^{p} \cup I_{j}^{k}, I_{j}^{k}=\emptyset$ and $\left|G_{j}\right|=\left|\cup_{\ell=1}^{p} I_{j}^{\ell}\right| / 2 \leq$ $(d-1) / 2$ (since d is odd).

Recall from the proof of Theorem 3.6 that for each facet F_{j} of $P^{d, k, n}, G_{j}$ is the same size as the minimum new face G of the corresponding facet of $P^{d, k, n-1}$; that facet is the same (as vertex set) as F_{j}, if $\max F_{j} \leq n-2$, and is $\operatorname{lsh}\left(F_{j}\right)$, if $\max F_{j} \geq n-1$. From Proposition 3.5 we see that each facet of $P^{d, k, n-1}$ with maximum vertex $n-2$ gives rise to two facets of $P^{d, k, n}$, while all others give rise to exactly one facet each. Thus for all i,

$$
\begin{aligned}
& h_{i}^{\prime}\left(P^{d, k, n}\right)=h_{i}^{\prime}\left(P^{d, k, n-1}\right) \\
& \quad+\quad \mid\left\{j: F_{j} \text { is a facet of } P^{d, k, n} \text { with } \max F_{j}=n-1 \text { and }\left|G_{j}\right|=i\right\} \mid .
\end{aligned}
$$

Thus, for all $i, h_{i}^{\prime}\left(P^{d, k, n}\right) \geq h_{i}^{\prime}\left(P^{d, k, n-1}\right)$, so by induction, $h_{i}^{\prime}\left(P^{d, k, n}\right) \geq$ $h_{i}^{\prime}\left(C^{d, k}\right)$. Furthermore, if $\max F_{j}=n-1$, then $\max \left(\operatorname{lsh}\left(F_{j}\right)\right)=(n-1)-1$, so by the induction hypothesis, $\left|G_{j}\right| \leq(d-1) / 2$. So for $i>d / 2, h_{i}^{\prime}\left(P^{d, k, n}\right)=$ $h_{i}^{\prime}\left(P^{d, k, n-1}\right)=h_{i}\left(C^{d, k}\right)$.

Note that for the multiplex $M^{d, n}(d$ odd or even $), h^{\prime}\left(M^{d, n}\right)=(1, n-d+$ $1,1,1, \ldots, 1,1)$, while $h\left(M^{d, n}\right)=(1, n-d+1, n-d+1, \ldots, n-d+1,1)$.

Now for multiplicial polytopes, we consider the remaining part of the h-vector, coming from the parameters $f_{0, j}-(j+1) f_{j}$. This is

$$
\begin{aligned}
& h(P, x)-h^{\prime}(P, x) \\
& \quad=\quad\left(f_{0, d-1}-d f_{d-1}\right)+\sum_{i=2}^{d-1}\left(\left(f_{0, i}-(i+1) f_{i}\right)+\left(f_{0, i-1}-i f_{i-1}\right)\right)(x-1)^{d-i}
\end{aligned}
$$

So

$$
\begin{aligned}
& h(P, x+1)-h^{\prime}(P, x+1) \\
& \quad=\quad\left(f_{0, d-1}-d f_{d-1}\right)+\sum_{i=2}^{d-1}\left(\left(f_{0, i}-(i+1) f_{i}\right)+\left(f_{0, i-1}-i f_{i-1}\right)\right) x^{d-i} \\
& \quad=\sum_{i=2}^{d-1}\left(f_{0, i}-(i+1) f_{i}\right)(x+1) x^{d-1-i}
\end{aligned}
$$

So

$$
\sum_{i=2}^{d-1}\left(h_{i}(P)-h_{i}^{\prime}(P)\right)(x+1)^{d-1-i}=\sum_{i=2}^{d-1}\left(f_{0, i}-(i+1) f_{i}\right) x^{d-1-i}
$$

For the ordinary polytope, this equation can be applied locally to give the contribution to $h\left(P^{d, k, n}, x\right)-h^{\prime}\left(P^{d, k, n}, x\right)$ from each interval $\left[G_{j}, F_{j}\right]$ of the shelling partition. For each j, and each $i \geq \operatorname{dim} G_{j}$, let $b_{j, i}=$ $\sum\left(f_{0}(H)-(i+1)\right)$, where the sum is over all i-faces H in $\left[G_{j}, F_{j}\right]$. Let $b_{j}(x)=\sum_{i=\operatorname{dim} G_{j}}^{d-1} b_{j, i} x^{d-1-i}$. Write $b_{j}(x)$ in the basis of powers of $(x+1)$: $b_{j}(x)=\sum a_{j, i}(x+1)^{d-1-i}$. Then $a_{j, i}=h_{i}\left(\mathcal{G}_{j}\right)-h_{i}^{\prime}\left(\mathcal{G}_{j}\right)$, the contribution to $h_{i}\left(P^{d, k, n}\right)-h_{i}^{\prime}\left(P^{d, k, n}\right)$ from faces in the interval $\left[G_{j}, F_{j}\right]$. Note that for fixed $j, \sum_{i} a_{j, i}=b_{j}(0)=f_{0}\left(F_{j}\right)-d$. We will return to the coefficients $a_{j, i}$ after triangulating the ordinary polytope.

Example. The h-vector of $P^{5,6,8}$ is $h\left(P^{5,6,8}\right)=(1,4,7,7,4,1)$. The sum of the h_{i} is 24 , which counts the 16 facets plus one for each of the four 6 -vertex facets, plus two for each of the two 7 -vertex facets. Referring to Table 1 , we see that $h^{\prime}\left(P^{5,6,8}\right)=(1,4,5,3,2,1)$; from this we compute $f\left(P^{5,6,8}\right)=(9,31,52,44,16)$. The nonzero $a_{j, i}$ here are $a_{6,2}=a_{7,3}=a_{11,2}=$ $a_{12,3}=1$ and $a_{13,3}=a_{15,4}=2$. In this case each interval $\left[G_{j}, F_{j}\right]$ contributes to $h_{i}\left(P^{d, k, n}\right)-h_{i}^{\prime}\left(P^{d, k, n}\right)$ for at most one i, but this is not true in general.

5 Triangulating the ordinary polytope

Triangulations of polytopes or of their boundaries can be used to calculate the h-vector of the polytope if the triangulation is shallow [2]. The solid
ordinary polytope need not have a shallow triangulation, but its boundary does have a shallow triangulation. The triangulation is obtained simply by triangulating each multiplex as in Section 2. This triangulation is obtained by "pushing" the vertices in the order $0,1, \ldots, n$. (See [13] for pushing (placing) triangulations.)

Theorem 5.1 The boundary of the ordinary polytope $P^{d, k, n}$ has a shallow triangulation. The facets of one such triangulation are the Gale subsets of $[i, i+k]$ (where $0 \leq i \leq n-k$) of size d containing either 0 or n or the set $\{i, i+k\}$.

Proof: First we show that each such set is a consecutive subset of some facet of $P^{d, k, n}$. Suppose Z is a Gale subset of $[i, i+k]$ of size d containing $\{i, i+k\}$. Write $Z=[i, i+a-1] \cup Y \cup[i+k-b+1, i+k]$, where $a \geq 1$, $b \geq 1$, and $Y \cap\{i+a, i+k-b\}=\emptyset$. Since Z is a Gale subset, $|Y|$ is even; let $r=(d-1-|Y|) / 2$. Since $|Z|=d, a+b=2 r+1$, so a and b are each at most 2r. Define $X=[i+a-2 r, i+a-1] \cup Y \cup[i+k-b+1, i+k-b+2 r]$. Note that $i+k-b+1=(i+a-2 r)+k$. Then $\operatorname{ret}_{n}(X)$ is the vertex set of a facet of $P^{d, k, n}$, and Z is a consecutive subset of $\operatorname{ret}_{n}(X)$.

Now suppose that Z is a Gale subset of $[0, k]$ of size d containing 0 , but not k. Write $Z=\{0\} \cup Y \cup[j-2 r+1, j]$, where $j<k, r \geq 1$, and $j-2 r \notin Y$. Then $|Y|=d-2 r-1$, and $Z=\operatorname{ret}_{n}(X)$, where $X=$ $[j-2 r+1-k, j-k] \cup Y \cup[j-2 r+1, j]$. So Z itself is the vertex set of a facet of $P^{d, k, n}$. The case of sets containing n but not $n-k$ works the same way.

Next we show that all consecutive d-subsets of facets F of $P^{d, k, n}$ are of one of these types. Let $F=\operatorname{ret}_{n}(X)$, where $X=[i, i+2 r-1] \cup Y \cup[i+k, i+$ $k+2 r-1]$, with Y a paired subset of size $d-2 r-1$ of $[i+2 r+1, i+k-2]$. Suppose first that $i+2 r-1 \geq 0$ and $i+k \leq n$. Let Z be a consecutive d-subset of F. Since $|Y|=d-2 r-1,|[i, i+2 r-1] \cap F| \leq 2 r$, and $|[i+k, i+k+2 r-1] \cap F| \leq 2 r$, it follows that $i+2 r-1$ and $i+k$ must both be in Z. Thus we can write $Z=[i+2 r-a, i+2 r-1] \cup Y \cup[i+k, i+k+b-1]$, with $a+b=2 r+1, i+2 r-a \geq 0$, and $i+k+b-1 \leq n$. Let $\ell=i+2 r-a$. Then $i+k+b-1=\ell+k$, so $0 \leq \ell \leq n-k$, and Z is a Gale subset of $[\ell, \ell+k]$ containing $\{\ell, \ell+k\}$.

If $i+2 r-1<0$, then $i+k+2 r-1<k \leq n$, and $F=\{0\} \cup Y \cup[i+$ $k, i+k+2 r-1]$. Then $|F|=d$ and F itself is a Gale subset of $[0, k]$ of size d containing 0 . Similarly for the case $i+k>n$.

The sets described are exactly the ($d-1$)-simplices obtained by triangulating each facet of $P^{d, k, n}$ according to Theorem 2.1. The fact that this
triangulation is shallow follows from the corresponding fact for this triangulation of a multiplex.

Let $\mathcal{T}=\mathcal{T}\left(P^{d, k, n}\right)$ be this triangulation of $\partial P^{d, k, n}$. Since \mathcal{T} is shallow, $h\left(P^{d, k, n}, x\right)=h(\mathcal{T}, x)$. We calculate $h(\mathcal{T}, x)$ by shelling \mathcal{T}.

Theorem 5.2 Let $F_{1}, F_{2}, \ldots, F_{v}$ be the colex order of the facets of $P^{d, k, n}$. For each j, if $F_{j}=\left\{z_{1}, z_{2}, \ldots, z_{p_{j}}\right\} \quad\left(z_{1}<z_{2}<\cdots<z_{p_{j}}\right)$, and $1 \leq \ell \leq$ $p_{j}-d+1$, let $T_{j, \ell}=\left\{z_{\ell}, z_{\ell+1}, \ldots, z_{\ell+d-1}\right\}$. Then $T_{1,1}, T_{1,2}, \ldots, T_{1, p_{1}-d+1}$, $T_{2,1}, \ldots, T_{2, p_{2}-d+1}, \ldots, T_{v, 1}, \ldots, T_{v, p_{v}-d+1}$ is a shelling of $\mathcal{T}\left(P^{d, k, n}\right)$.

Let $U_{j, \ell}$ be the minimal new face when $T_{j, \ell}$ is shelled on. As vertex sets, $U_{j, p_{j}-d+1}=G_{j}$.

Proof: Throughout the proof, write $F_{j}=\left\{z_{1}, z_{2}, \ldots, z_{p_{j}}\right\}\left(z_{1}<z_{2}<\cdots<\right.$ $z_{p_{j}}$). We first show that G_{j} is the unique minimal face of $T_{j, p_{j}-d+1}$ not contained in $\left(\cup_{i=1}^{j-1} \cup_{\ell=1}^{p_{i}-d+1} T_{i, \ell}\right) \cup\left(\cup_{\ell=1}^{p_{j}-d} T_{j, \ell}\right)$. The set G_{j} is not contained in a facet of $P^{d, k, n}$ earlier than F_{j}. So G_{j} does not occur in a facet of \mathcal{T} of the form $T_{i, \ell}$ for $i<j$. Also, $\max F_{j} \in G_{j}$, so G_{j} does not occur in a facet of \mathcal{T} of the form $T_{j, \ell}$ for $\ell \leq p_{j}-d$. Thus G_{j} does not occur in a facet of \mathcal{T} before $T_{j, p_{j}-d+1}$.

We show that for $z_{q} \in G_{j}, T_{j, p_{j}-d+1} \backslash\left\{z_{q}\right\}$ is contained in a facet of \mathcal{T} occurring before $T_{j, p_{j}-d+1}$. There is nothing to check for $j=v$, because $p_{v}-d+1=1$ and so $T_{v, 1}=F_{v}$ is the last simplex in the purported shelling order. So we may assume that $j<v$ and thus G_{j} is contained in the last $d-1$ vertices of F_{j}.
Case 1. If $p_{j}>d$ and $q=p_{j}$ (giving the maximal element of F_{j}), then $T_{j, p_{j}-d+1} \backslash\left\{z_{p_{j}}\right\} \subset T_{j, p_{j}-d}$.
Case 2. Suppose $p_{j}-d+2 \leq q \leq p_{j}-1$. Then $T_{j, p_{j}-d+1} \backslash\left\{z_{q}\right\} \subseteq$ $\left\{z_{q-d+2}, \ldots, z_{q-1}, z_{q+1} \ldots, z_{p_{j}}\right\}=H$. This is a ridge of $P^{d, k, n}$ in F_{j} not containing G_{j}, and hence H is contained in a previous facet F_{ℓ} of $P^{d, k, n}$. Since H is a ridge in both F_{j} and F_{ℓ}, H is obtained from each facet by deleting a single element from a consecutive string of vertices in the facet. So $|H| \leq\left|F_{\ell} \cap\left[z_{q-d+2}, z_{p_{j}}\right]\right| \leq|H|+1$, and so $d-1 \leq\left|F_{\ell} \cap\left[z_{p_{j}-d+1}, z_{p_{j}}\right]\right| \leq d$. So $T_{j, p_{j}-d+1} \backslash\left\{z_{q}\right\}$ is contained in a consecutive set of d elements of F_{ℓ}, and hence in a $(d-1)$-simplex of $\mathcal{T}\left(P^{d, k, n}\right)$ belonging to F_{ℓ}. This simplex occurs before $T_{j, p_{j}-d+1}$ in the specified shelling order.
Case 3. Otherwise $p_{j}=d$ (so $p_{j}-d+1=1$) and $q=d$. Then $T_{j, 1}=F_{j}$ and $H=T_{j, 1} \backslash\left\{z_{d}\right\}$ is a ridge of $P^{d, k, n}$ in F_{j} not containing max F_{j}, so H is contained in a previous facet F_{ℓ} of $P^{d, k, n}$. As in Case $2, d-1 \leq$ $\left|F_{\ell} \cap\left[z_{1}, z_{d-1}\right]\right| \leq d$. So $T_{j, 1} \backslash\left\{z_{d}\right\}$ is contained in a consecutive set of d
elements of F_{ℓ}, and hence in a ($d-1$)-simplex of $\mathcal{T}\left(P^{d, k, n}\right)$ belonging to F_{ℓ}. This simplex occurs before $T_{j, p_{j}-d+1}$ in the specified shelling order.

So in the potential shelling of \mathcal{T}, G_{j} is the unique minimal new face as $T_{j, p_{j}-d+1}$ is shelled on. Write $U_{j, p_{j}-d+1}=G_{j}$. At this point we need a clearer view of the simplex $T_{j, \ell}$. Recall that F_{j} is of the form $\operatorname{ret}_{n}(X)$, where $X=[i, i+2 r-1] \cup Y \cup[i+k, i+k+2 r-1]$, with Y a subset of size $d-2 r-1$. If $i+2 r-1<0$ or $i+k>n$, then $p_{j}=\left|F_{j}\right|=d$, and $T_{j, 1}=T_{j, p_{j}-d+1}=F_{j}$; we have already completed this case. So assume $i+2 r-1 \geq 0$ and $i+k \leq n$. A consecutive string of length d in $\operatorname{ret}_{n}(X)$ must then be of the form $[i+s, i+2 r-1] \cup Y \cup[i+k, i+k+s]$ for some $s, 0 \leq s \leq 2 r-1$. (All such strings-with appropriate Y-having $i+s \geq 0$ and $i+k+s \leq n$ occur as $T_{j, \ell .}$.) In particular, for $\ell<p_{j}-d+1$, $T_{j, \ell}=T_{j, \ell+1} \backslash\left\{\max T_{j, \ell+1}\right\} \cup\left\{\min T_{j, \ell+1}-1\right\}$ and $\max T_{j, \ell}=\min T_{j, \ell}+k$.

Now define $U_{j, \ell}$ for $\ell \leq p_{j}-d$ recursively by $U_{j, \ell}=U_{j, \ell+1} \backslash\{z\} \cup\{z-$ $k, z-1\}$, where $z=\max T_{j, \ell+1}$. By the observations above, $U_{j, \ell} \subseteq T_{j, \ell}$. We prove by downward induction that $U_{j, \ell}$ is not contained in a facet F_{i} of $P^{d, k, n}$ before F_{j}, that $U_{j, \ell}$ is not contained in a facet of \mathcal{T} occurring before $T_{j, \ell}$, and that any ridge of \mathcal{T} in $T_{j, \ell}$ not containing all of $U_{j, \ell}$ is in an earlier facet of \mathcal{T}. The base case of the induction is $\ell=p_{j}-d+1$, and this case has been handled above.

Note that $\{z-k, z-1\}$ is a diagonal of the 2 -face $\{z-k-1, z-k, z-1, z\}$ of $P^{d, k, n}$ [9]. So if F_{i} is a facet of $P^{d, k, n}$ containing $U_{j, \ell}$, then F_{i} contains $\{z-k-1, z-k, z-1, z\}$. Thus F_{i} contains $U_{j, \ell+1}$, so, by the induction assumption, $i \geq j$. Therefore, for $i<j$, and any $r, T_{i, r}$ does not contain $U_{j, \ell}$. For $r<\ell, T_{j, r}$ does not contain $z-1=\max T_{j, \ell}$, so $T_{j, r}$ does not contain $U_{j, \ell}$.

Now we wish to show that for any $g \in U_{j, \ell}, T_{j, \ell} \backslash\{g\}$ is in a previous facet of \mathcal{T}.
Case 1. If $g=z-1=\max T_{j, \ell}$ and $\ell \geq 2$, then $T_{j, \ell} \backslash\{g\} \subset T_{j, \ell-1}$.
Case 2. If $g=z-1=\max T_{j, \ell}$ and $\ell=1$, then $T_{j, \ell} \backslash\{g\}$ is the leftmost ridge of $P^{d, k, n}$ in F_{j} and, in particular, does not contain $\max F_{j}$. So $H=T_{j, \ell} \backslash\{g\}$ is contained in a previous facet F_{e} of $P^{d, k, n}$. As in the $\ell=p_{j}-d+1$ case, $F_{e} \cap\left[\min T_{j, \ell}, \max T_{j, \ell}\right]$ is contained in a consecutive set of d elements of F_{e}, and hence in a $(d-1)$-simplex of $\mathcal{T}\left(P^{d, k, n}\right)$ belonging to F_{e}. So $T_{j, \ell} \backslash\{g\}$ is contained in a previous facet of \mathcal{T}.
Case 3. Suppose $g<z-1$ and $g \in U_{j, \ell} \cap U_{j, \ell+1}$. Since $\{z-1, z\} \subset T_{j, \ell+1}$, $T_{j, \ell+1}$ contains at most $d-3$ elements less than g. The ridge H of $P^{d, k, n}$ in F_{j} containing $T_{j, \ell+1} \backslash\{g\}$ consists of the $d-2$ elements of F_{j} below g and the (up to) $d-2$ elements of F_{j} above g. In particular, H contains $\min T_{j, \ell+1}-1=\min T_{j, \ell}$. So $T_{j, \ell} \backslash\{g\} \subset H$. Since $\operatorname{dim} T_{j, \ell} \backslash\{g\}=d-2$,
H is the (unique) smallest face of $P^{d, k, n}$ containing $T_{j, \ell+1} \backslash\{g\}$. By the induction hypothesis $T_{j, \ell+1} \backslash\{g\}$ is contained in a previous facet $T_{i, r}$ of \mathcal{T}; here $i<j$ because $\max T_{j, \ell+1} \in T_{j, \ell+1} \backslash\{g\}$. The $(d-2)$-simplex $T_{j, \ell+1} \backslash\{g\}$ is then contained in a ridge of $P^{d, k, n}$ contained in F_{i}, but this ridge must be H, by the uniqueness of H. So $T_{j, \ell} \backslash\{g\} \subset H=F_{i} \cap F_{j}$. As in earlier cases, $F_{i} \cap\left[\min T_{j, \ell}, \max T_{j, \ell}\right]$ is contained in a consecutive set of d elements of F_{i}, and hence in a $(d-1)$-simplex of $\mathcal{T}\left(P^{d, k, n}\right)$ belonging to F_{i}. So $T_{j, \ell} \backslash\{g\}$ is contained in a previous facet of \mathcal{T}.
Case 4. Finally, let $g=z-k$, which is $\min T_{j, \ell}+1$. Then $T_{j, \ell}$ contains $d-2$ elements above g. Let H be the ridge of $P^{d, k, n}$ in F_{j} containing $T_{j, \ell} \backslash\{g\}$. Then $\max H=\max T_{j, \ell}<\max F_{j}$, so H does not contain G_{j}. So H is in a previous facet F_{i} of $P^{d, k, n}$. As in earlier cases, $F_{i} \cap\left[\min T_{j, \ell}, \max T_{j, \ell}\right]$ is contained in a consecutive set of d elements of F_{i}, and hence in a $(d-1)$ simplex of $\mathcal{T}\left(P^{d, k, n}\right)$ belonging to F_{i}. So $T_{j, \ell} \backslash\{g\}$ is contained in a previous facet of \mathcal{T}.

Thus $T_{1,1}, T_{1,2}, \ldots, T_{1, p_{1}-d+1}, T_{2,1}, \ldots, T_{2, p_{2}-d+1}, \ldots, T_{v, 1}, \ldots, T_{v, p_{v}-d+1}$ is a shelling of $\mathcal{T}\left(P^{d, k, n}\right)$.

Corollary 5.3 Let $n \geq k \geq d=2 m+1 \geq 5$. Let $\cup\left[G_{j}, F_{j}\right]$ be the partition of the face lattice of $P^{d, k, n}$ from the colex shelling, and let $\cup\left[U_{j, \ell}, T_{j, \ell}\right]$ be the partition of the face lattice of $\mathcal{T}\left(P^{d, k, n}\right)$ from the shelling of Theorem 5.2. Then

1. For each $i, h_{i}\left(P^{d, k, n}\right) \geq h_{i}^{\prime}\left(P^{d, k, n}\right)$.
2. The contribution to $h_{i}\left(P^{d, k, n}\right)-h_{i}^{\prime}\left(P^{d, k, n}\right)$ from the interval $\left[G_{j}, F_{j}\right]$ is

$$
a_{j, i}=\left|\left\{\ell:\left|U_{j, \ell}\right|=i, 1 \leq \ell \leq p_{\ell}-d\right\}\right| \geq 0 .
$$

Proof: The h-vector of \mathcal{T} counts the sets $U_{j, \ell}$ of each size. Among these are all the sets G_{j} counted by the h^{\prime}-vector of $P^{d, k, n}$. Thus

$$
\begin{aligned}
h_{i}\left(\mathcal{T}\left(P^{d, k, n}\right)\right) & =\left|\left\{(j, \ell):\left|U_{j, \ell}\right|=i\right\}\right| \\
& \geq \mid\left\{(j, \ell):\left|U_{j, \ell}\right|=i \text { and } \ell=p_{j}-d+1\right\} \mid=h_{i}^{\prime}\left(P^{d, k, n}\right) .
\end{aligned}
$$

Recall that we write \mathcal{G}_{j} for the set of faces of F_{j} not in $\cup_{i<j} F_{i}$; here \mathcal{G}_{j} is the set of faces in $\left[G_{j}, F_{j}\right]$. Write also $\mathcal{T} \mathcal{G}_{j}$ for the set of faces of \mathcal{T} that are contained in F_{j} but not in $\cup_{i<j} F_{i}$. By [2, Corollary 7], since \mathcal{T} is a shallow triangulation of $\partial P^{d, k, n}, g(G, x)=\sum(x-1)^{d-1-\operatorname{dim} \sigma}$, where the sum is over
all faces σ of \mathcal{T} that are contained in G but not in any proper subface of G. Thus

$$
\begin{aligned}
h\left(\mathcal{G}_{j}, x\right) & =\sum_{G \in\left[G_{j}, F_{j}\right]} g(G, x)(x-1)^{d-1-\operatorname{dim} G} \\
& =\sum_{\sigma \in \mathcal{T} \mathcal{G}_{j}}(x-1)^{d-1-\operatorname{dim} \sigma}=\sum_{\ell=1}^{p_{\ell}-d+1} x^{d-\left|U_{j, \ell}\right|}
\end{aligned}
$$

Since $h^{\prime}\left(\mathcal{G}_{j}, x\right)=x^{d-\left|G_{j}\right|}=x^{d-\left|U_{j, p_{j}-d+1}\right|}$,

$$
\sum_{i} a_{j, i} x^{i}=h\left(\mathcal{G}_{j}, x\right)-h^{\prime}\left(\mathcal{G}_{j}, x\right)=\sum_{\ell=1}^{p_{\ell}-d} x^{d-\left|U_{j, \ell}\right|}
$$

or

$$
a_{j, i}=\left|\left\{\ell:\left|U_{j, \ell}\right|=i, 1 \leq \ell \leq p_{\ell}-d\right\}\right| \geq 0
$$

(j, ℓ)	$T_{j, \ell}$	$U_{j, \ell}$	(j, ℓ)	$T_{j, \ell}$	$U_{j, \ell}$
1,1	01234	\emptyset	11, 1	12347	27
2,1	01245	5	11, 2	23478	78
3,1	02345	35	12, 1	12457	257
4,1	02356	6	12, 2	24578	578
5,1	03456	46	13,1	01236	126
6,1	01346	16	13, 2	12367	267
6, 2	13467	7	13,3	23678	678
7,1	01456	156	14,1	34678	4678
7,2	14567	57	15,1	01256	1256
8,1	23458	8	15,2	12567	2567
9,1	23568	68	15,3	25678	5678
10,1	34568	468	16,1	45678	45678

Table 2: Shelling of triangulation of $P^{5,6,8}$

Example. Table 2 gives the shelling of the triangulation of $P^{5,6,8}$. (Refer back to Table 1 for the shelling of $P^{5,6,8}$ itself.) Among the rows $(6,1),(7,1)$, $(11,1),(12,1),(13,1),(13,2),(15,1),(15,2)$ (rows (j, ℓ) that are not the last row for that j), count the $U_{j, \ell}$ of cardinality i to get $h_{i}\left(P^{5,6,8}\right)-h_{i}^{\prime}\left(P^{5,6,8}\right)$. Note that $U_{13,3}=G_{13}\left(\right.$ from Table 1), and that $U_{13,2}=U_{13,3} \backslash\{8\} \cup\{2,7\}$.

The ridges in $T_{13,2}$ are 1236, 1237, 1267, 1367, and 2367. The first ridge, 1236, falls under Case 1 of the proof of Theorem 5.2; it is contained in the previous facet, $T_{13,1}$. The next ridge, 1237, falls under Case 3 ; it is contained in the ridge 12378 of $P^{5,6,8}$ in $F_{13}=0123678$, and 12378 also contains the ridge 2378 in $T_{13,3}$. The induction assumption says that 2378 is contained in an earlier facet, in this case $T_{11,2}$, and 12378 is contained in F_{11}. Finally, the ridge 1237 is contained in the simplex $T_{11,1}$, part of the triangulation of F_{11}. The last ridge of $T_{13,2}$ not containing 267 is 1367 . It falls under Case 4. The set 1367 is contained in the ridge 01367 of $P^{5,6,8}$, contained in F_{13}. This ridge is also contained in the earlier facet F_{6}. The ridge 1367 of the triangulation is contained in the simplex $T_{6,2}$.

Theorem 5.4 Let $n \geq d+k-1$. For $1 \leq i \leq d-1, h_{i}\left(P^{d, k, n}\right)-h_{i}\left(P^{d, k, n-1}\right)$ is the number of facets $T_{j, \ell}$ of $\mathcal{T}\left(P^{d, k, n}\right)$ such that $\max F_{j}=n-1$ and $\left|U_{j, \ell}\right|=i$. For $1 \leq i \leq m$, this is $\binom{k-d+i-1}{i-1}$.

Proof: Refer to Proposition 3.5 for a description of the facets of $P^{d, k, n}$ in terms of those of $P^{d, k, n-1}$. For $n \geq d+k-1$, for every facet $P^{d, k, n}$ ending in n, the translation $F-1$ is a facet of $P^{d, k, n-1}$. (For smaller n, a facet of $P^{d, k, n}$ may end in 0 , in which case $\operatorname{lsh}(\mathrm{F})$ is a proper subset of $F-1$.) The same holds for the simplices $T_{j, \ell}$ triangulating these facets, and for the sets $U_{j, \ell}$. The facets of $P^{d, k, n}$ ending in $n-2$ are facets of $P^{d, k, n-1}$, and the same holds for the corresponding $T_{j, \ell}$ and $U_{j, \ell}$. The contributions to $h\left(P^{d, k, n}\right)$ from facets ending in any element but $n-1$ thus total $h\left(P^{d, k, n-1}\right)$. So for $1 \leq i \leq d-1, h_{i}\left(P^{d, k, n}\right)-h_{i}\left(P^{d, k, n-1}\right)$ is the number of facets $T_{j, \ell}$ of $\mathcal{T}\left(P^{d, k, n}\right)$ such that $\max F_{j}=n-1$ and $\left|U_{j, \ell}\right|=i$.

Now consider the set \mathcal{S} of facets $T_{j, \ell}$ of $\mathcal{T}\left(P^{d, k, n}\right)$ with $\max F_{j}=n-1$. For each $T \in \mathcal{S}, T$ is a set of d elements occurring consecutively in some F_{j} with maximum element $n-1$. So T can be written as

$$
\begin{equation*}
T=[b, n-k-1] \cup[n-k+1, c] \cup Y \cup[e, b+k], \tag{2}
\end{equation*}
$$

where

1. $n-k-d+1 \leq b \leq n-k-1$;
2. $n-k \leq c \leq b+d-1$ and $c-n+k$ is even (here $c=n-k$ means $[n-k+1, c]=\emptyset)$;
3. Y is a paired subset of $[c+2, e-1]$;
4. $e=b+k-1$ if $n-k-b$ is odd, and $e=b+k$ if $n-k-b$ is even; and
5. $|T|=d$.

In these terms, the minimum new face U when T is shelled on is $U=$ $[b+1, n-k-1] \cup E(Y) \cup\{b+k\}$.

We give a bijection between the facets T in \mathcal{S} with $|U|=i$ (where $1 \leq i \leq m)$ and the $(k-d)$-element subsets of $[1, k-d+i-1]$. Let T be as in Equation 2. Then $i=|U|=n-k-b+|Y| / 2$. For each $x \geq c+1$, let $y(x)$ be the number of pairs in Y with both elements less than x. Let $a_{1}=n-k-b=$ $i-|Y| / 2$. Write $[c+1, e-1] \backslash Y=\left\{x_{1}, x_{2}, \ldots, x_{k-d}\right\}$, with the x_{ℓ} s increasing. (This set has $k-d$ elements because $d=(c-b)+|Y|+(b+k-e+1)$, so $|[c+1, e-1] \backslash Y|=e-c-1-|Y|=k-d$.) Set

$$
A(T)=\left\{a_{1}+y\left(x_{\ell}\right)+\ell-1: 1 \leq \ell \leq k-d\right\} .
$$

To see that this is a subset of $[1, k-d+i-1]$, note that the elements of $A(T)$ form an increasing sequence with minimum element a_{1} and maximum element $a_{1}+y\left(x_{k-d}\right)+(k-d-1) \leq a_{1}+|Y| / 2+(k-d-1)=k-d+i-1$.

For the inverse of this map, write a $(k-d)$-element subset of $[1, k-d+i-1]$ as $A=\left\{a_{1}, a_{2}, \ldots, a_{k-d}\right\}$, with the a_{ℓ} s increasing. Then $1 \leq a_{1} \leq i$. Let

$$
x_{1}=n-k+d-2 i+a_{1}-\chi\left(a_{1} \text { odd }\right) .
$$

Set

$$
\begin{aligned}
T(A)= & {\left[n-k-a_{1}, n-k-1\right] \cup\left[n-k+1, x_{1}-1\right] } \\
& \cup Y \cup\left[n-a_{1}-\chi\left(a_{1} \text { odd }\right), n-a_{1}\right],
\end{aligned}
$$

where
$Y=\left(\left[x_{1}, n-a_{1}-1-\chi\left(a_{1}\right.\right.\right.$ odd $\left.\left.)\right] \backslash\left\{x_{1}+2\left(a_{\ell}-a_{1}\right)-(\ell-1): 1 \leq \ell \leq k-d\right\}\right)$.
We check that this gives a set of the required form.
(1) Since $1 \leq a_{1} \leq i \leq d-1 n-k-d+1 \leq n-k-a_{1} \leq n-k-1$.
(2) $x_{1}-1-n+k=d-2 i-1+\left(a_{1}-\chi\left(a_{1}\right.\right.$ odd $)$), which is nonnegative and even; $x_{1}-1=\left(n-k-a_{1}+d-1\right)-\left(2 i-2 a_{1}+\chi\left(a_{1}\right.\right.$ odd $\left.)\right) \leq n-k-a_{1}+d-1$. (3) Y is clearly a subset of $\left[x_{1}+1, n-a_{1}-\chi\left(a_{1}\right.\right.$ odd $\left.)-1\right]$. To see that Y is paired note that the difference between two consecutive elements in the removed set is $\left(x_{1}+2\left(a_{\ell+1}-a_{1}\right)-\ell\right)-\left(x_{1}+2\left(a_{\ell}-a_{1}\right)-(\ell-1)\right)=$ $2\left(a_{\ell+1}-a_{\ell}\right)-1$.
(4) This condition holds by definition.
(5) To check the cardinality of $T(A)$, observe

$$
\begin{aligned}
& x_{1}+2\left(a_{k-d}-a_{1}\right)-(k-d-1) \\
& \quad \leq x_{1}+2(k-d+i-1)-2 a_{1}-(k-d-1) \\
& \quad=x_{1}+k-d+2 i-2 a_{1}-1=n-a_{1}-\chi\left(a_{1} \text { odd }\right)-1 .
\end{aligned}
$$

So
$\left\{x_{1}+2\left(a_{\ell}-a_{1}\right)-(\ell-1): 1 \leq \ell \leq k-d\right\} \subseteq\left[x_{1}+1, n-a_{1}-1-\chi\left(a_{1}\right.\right.$ odd $\left.)\right]$,
and

$$
|Y|=\left(n-a_{1}-\chi\left(a_{1} \text { odd }\right)-x_{1}\right)-(k-d)=2 i-2 a_{1} .
$$

So $|T(A)|=x_{1}-\left(n-k-a_{1}\right)+|Y|+\chi\left(a_{1}\right.$ odd $)=d$.
Also, in this case $U=\left[n-k-a_{1}+1, n-k-1\right] \cup E(Y) \cup\left\{n-a_{1}\right\}$, so $|U|=i$.

It is straightforward to check that these maps are inverses. The main point is that, if $a_{\ell}=a_{1}+y\left(x_{\ell}\right)+\ell-1$, then

$$
\begin{aligned}
x_{1}+2\left(a_{\ell}-a_{1}\right)-(\ell-1) & =x_{1}+2\left(y\left(x_{\ell}\right)+\ell-1\right)-(\ell-1) \\
& =x_{1}+2 y\left(x_{\ell}\right)+\ell-1=x_{\ell} .
\end{aligned}
$$

Example. Consider the ordinary polytope $P^{7,9,15}$. There are six facets with maximum vertex 14; they are (with sets G_{j} underlined) $\{4,5,7,8,9,10,13, \underline{14}\}$, $\{4,5,7,8,10, \underline{11}, 13, \underline{14}\},\{4,5,8, \underline{9}, 10, \underline{11}, 13, \underline{14}\},\{2,3,4,5,7,8,11, \underline{12}, 13, \underline{14}\}$, $\{2,3,4,5,8, \underline{9}, 11, \underline{12}, 13, \underline{14}\}$, and $\{0,1,2,3,4,5,9, \underline{10}, 11, \underline{12}, 13, \underline{14}\}$. Among the 6 -simplices occurring in the triangulation of these facets, six have $\left|U_{j, \ell}\right|=$ 3 . Table 3 gives the bijection from this set of simplices to the 2 -element subsets of $[1,4]$.

Again, the results of this section hold for even-dimensional multiplexes as well.

6 Afterword

The story of the combinatorics of simplicial polytopes is a beautiful one. There one finds an intricate interplay among the face lattice of the polytope, shellings, the Stanley-Reisner ring and the toric variety, tied together with the h-vector. The cyclic polytopes play a special role, serving as the

$T_{j, \ell}$	b	c	e	Y	a_{1}	x_{1}, x_{2}	$y\left(x_{i}\right)$	$A\left(T_{j, \ell}\right)$
$4, \underline{5}, 7,8,10, \underline{11}, \underline{13}$	4	8	13	10,11	2	9,12	0,1	$\{2,4\}$
$5,8, \underline{9}, 10, \underline{11}, 13, \underline{14}$	5	6	13	$8,9,10,11$	1	7,12	0,2	$\{1,4\}$
$3, \underline{4}, \underline{5}, 7,8,11, \underline{12}$	3	8	11	\emptyset	3	9,10	0,0	$\{3,4\}$
$4, \underline{5}, 7,8,11, \underline{12}, \underline{13}$	4	8	13	11,12	2	9,10	0,0	$\{2,3\}$
$5,8, \underline{9}, 11, \underline{12}, 13, \underline{14}$	5	6	13	$8,9,11,12$	1	7,10	0,1	$\{1,3\}$
$5,9, \underline{10}, 11, \underline{12}, 13, \underline{14}$	5	6	13	$9,10,11,12$	1	7,8	0,0	$\{1,2\}$

Table 3: Bijection with 2-element subsets of $\{1,2,3,4\}$
extreme examples, and providing the environment in which to build representative polytopes for each h-vector (the Billera-Lee construction [5]). In the general case of arbitrary convex polytopes, the various puzzle pieces have not interlocked as well. In this paper we made progress on putting the puzzle together for the special class of ordinary polytopes. Since the ordinary polytopes generalize the cyclic polytopes, a natural next step would be to mimic the Billera-Lee construction, or Kalai's extension of it [11], on the ordinary polytopes, as a way of generating multiplicial flag vectors. It would also be interesting to see if there is a ring associated with these polytopes, particularly one having a quotient with Hilbert function equal to the h^{\prime}-polynomial. Another open problem is to determine the best even-dimensional analogues of the ordinary polytopes. They may come from taking vertex figures of odddimensional ordinary polytopes, or from generalizing Dinh's combinatorial description of the facets of ordinary polytopes. Looking beyond ordinary and multiplicial polytopes, we should ask what other classes of polytopes have shellings with special properties that relate to the h-vector?

Acknowledgments

My thanks go to the folks at University of Washington, the Discrete and Computational Geometry program at MSRI and the Diskrete Geometrie group at TU-Berlin, who listened to me when it was all speculation. Particular thanks go to Carl Lee for helpful discussions.

References

[1] Gottfried Barthel, Jean-Paul Brasselet, Karl-Heinz Fieseler, and Ludger Kaup, Combinatorial intersection cohomology for fans, Tohoku Math.
$J .(2), 54(1): 1-41,2002$.
[2] Margaret M. Bayer, Equidecomposable and weakly neighborly polytopes, Israel J. Math., 81 (1993), 301-320.
[3] Margaret M. Bayer, Flag vectors of multiplicial polytopes, Preprint 2003-016, Mathematical Sciences Research Institute, Berkeley, 2003.
[4] Margaret M. Bayer, Aaron M. Bruening, and Joshua D. Stewart, A combinatorial study of multiplexes and ordinary polytopes, Discrete Comput. Geom., 27 (2002), no. 1, 49-63
[5] Louis J. Billera and Carl W. Lee, A proof of the sufficiency of McMullen's conditions for f-vectors of simplicial polytopes, J. Combin. Theory Ser. A 31 (1981), 237-255.
[6] T. Bisztriczky, On a class of generalized simplices, Mathematika, 43 (1996), 274-285.
[7] T. Bisztriczky, Ordinary $(2 m+1)$-polytopes, Israel J. Math., 102 (1997), 101-123.
[8] Tom Braden, g - and h-polynomials of non-rational polytopes-recent progress, Abstract at Meeting on Topological and Geometric Combinatorics, Mathematisches Forschungsinstitut Oberwolfach, April 6-12, 2003.
[9]
[10] Clara Chan. Plane trees and H-vectors of shellable cubical complexes. SIAM J. Discrete Math., 4(4):568-574, 1991.

Thi Ngoc Dinh, Ordinary Polytopes, PhD thesis, The University of Calgary, 1999.
[11] Gil Kalai, Many triangulated spheres, Discrete Comput. Geom., 3 (1988), 1-14.
[12] Kalle Karu, Hard Lefschetz Theorem for nonrational polytopes, arXiv:math.AG/0112087, v4, 2002.
[13] Carl W. Lee. Regular triangulations of convex polytopes. In Applied geometry and discrete mathematics, volume 4 of DIMACS Ser. Discrete Math. Theoret. Comput. Sci., pages 443-456. Amer. Math. Soc., Providence, RI, 1991.
[14] P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, Cambridge Univ. Press, London, 1971.
[15] Richard P. Stanley, The number of faces of simplicial convex polytopes, Adv. Math. 35 (1980), 236-238.
[16] Richard P. Stanley, Generalized H-vectors, intersection cohomology of toric varieties, and related results, In Commutative algebra and combinatorics (Kyoto, 1985), volume 11 of Adv. Stud. Pure Math., pages 187-213, Amsterdam-New York, 1987, North-Holland.
[17] Richard P. Stanley, Subdivisions and local h-vectors, J. Amer. Math. Soc., 5 (1992), 805-851.
[18] Günter M. Ziegler, Lectures on Polytopes, Springer-Verlag, 1995.

[^0]: *This research was supported by the sabbatical leave program of the University of Kansas, and was conducted while the author was at the Mathematical Sciences Research Institute, supported in part by NSF grant DMS-9810361, and at Technische Universität Berlin, supported in part by Deutsche Forschungs-Gemeinschaft, through the DFG Research Center "Mathematics for Key Technologies" (FZT86) and the Research Group "Algorithms, Structure, Randomness" (FOR 13/1-1).

