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Definitions

CONVEX POLYTOPE:

P = conv{x1, x2, . . . , xn} ⊂ Rd

proper FACE:

intersection of supporting hyperplane with P

FACE LATTICE:

∅, P, and proper faces, ordered by inclusion

FACE VECTOR:

(f0(P), f1(P), . . . , fd−1(P))

fi (P) = # of i-dimensional faces of P
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The main problem

BIG PROBLEM:

Characterize the face vectors of d-dimensional convex polytopes.

THEOREM (STEINITZ)

? Happy 100th Anniversary ?
(f0, f1, f2) ∈ N3 is the face vector of a 3-dimensional convex polytope if
and only if

1. f0 − f1 + f2 = 2 and

2. 2f1 ≥ 3f0 and 2f1 ≥ 3f2.
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The g -theorem

THEOREM (Conjectured by McMullen; proved by Stanley, and Billera and
Lee 1980)

Characterization of all face vectors of simplicial polytopes

• linear equations (Dehn-Sommerville)

• linear inequalities

• nonlinear inequalities

NONSIMPLICIAL, dim ≥ 4?

still open
need to look further than the face vector . . .
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Flag vectors

Let S = {s1, s2, . . . , sk}< ⊆ {0, 1, . . . , d − 1}.

Definition

An S-flag of P is a chain

∅ ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ P

with dim Fi = si .

fS(P) = # of S-flags of P
(fS(P))S⊆{0,1,...,d−1} is the flag vector of P.
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Example

f∅ = 1
f0 = 5
f1 = 8
f2 = 5
f01 = 16
f02 = 16
f12 = 16
f012 = 32
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Why Study Flag Vectors of Polytopes?

• Stanley (1970s) studied (fS) for balanced simplicial complexes/order
complexes of graded posets.

• For 3-dimensional polytopes and simplicial polytopes, for which the
face vectors are characterized, the flag vector depends (linearly) on
the face vector.

• For general polytopes, the flag vector reflects greater combinatorial
complexity than the face vector.

• Inequalities on flag vectors project to inequalities on face vectors.

• Flag vectors relate to parameters from algebraic geometry.
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Generalized Dehn-Sommerville Equations

THEOREM (B-Billera 1983)

The dimension of the linear span of flag vectors of d-polytopes is the dth
Fibonacci number.

• Finding the equations is straightforward.

• Finding spanning polytopes is more complicated.

• Kalai 1988 gives an elegant basis of polytopes.

Independent flag numbers

• dimension 3: f∅, f0, f1

• dimension 4: f∅, f0, f1, f2, f02

• dimension 5: f∅, f0, f1, f2, f3, f02, f03, f13
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Inequalities on Flag Vectors

Kalai rigidity inequality (1987)

f02 − 3f2 + f1 − df0 +

(
d + 1

2

)
≥ 0

4-dimensional polytopes (B 1987)

f0 ≥ 5
f3 ≥ 5
f02 − 3f2 ≥ 0
f02 − 3f1 ≥ 0
f02 − 3f2 + f1 − 4f0 + 10 ≥ 0
6f1 − 6f0 − f02 ≥ 0

Compare: face vectors
of 4-polytopes by
Barnette, Grünbaum,
Reay, 1967–1974.

Not known to be best possible.
No further linear inequalities for d = 4 since 1987.
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Toric h-vector (Stanley 1987)

(h0, h1, h2, . . . , hd)

middle perversity intersection homology Betti numbers
(h0, h1, h2, . . . , hd) depends linearly on flag vector

1 = h0 ≤ h1 ≤ h2 ≤ · · · ≤ hbd/2c

from algebraic geometry (for rational polytopes)
imply linear inequalities on flag vectors
Kalai rigidity inequality is h1 ≤ h2

Nonlinear inequalities?

Nonlinear inequalities, satisfied by h-vectors of simplicial polytopes, not
known to hold for general polytopes.

Karu 2004 broke dependence on algebraic geometry, extending results to
nonrational polytopes.
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cd -index

cd-index: Jonathan Fine 1986 [B and Klapper 1991]

vector of length = dth Fibonacci number
linearly equivalent to flag vector

Examples

4-simplex: cccc + 3dcc + 5cdc + 3ccd + 4dd
4-cube: cccc + 14dcc + 16cdc + 6ccd + 20dd

Fine conjecture

Each coefficient in the cd-index of a polytope is ≥ 0.
Proved by Stanley 1994 (for S-shellable spheres)
Strengthened by Billera and Ehrenborg 2000: The d-simplex minimizes
each coefficient among d-polytopes.
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Linear inequalities on flag vectors

Basic linear inequalities come from

• toric h-vector • cd-index

These are used to generate more inequalities

• by convolution (Kalai 1988)

• by lifting technique of Ehrenborg 2005
using coproduct structure discovered by Ehrenborg and Readdy 2000

How to analyze the resulting set of inequalities?

• Which are redundant?

• Which give facets of the closed convex cone of flag vectors?

Some answers by . . .

• Ehrenborg 2005 • Stenson 2004, 2005
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Kalai’s convolution

Definition

S ⊆ {0, 1, . . . , d − 1} T ⊆ {0, 1, . . . , e − 1}

fS ∗ fT (P) =
∑

dimF=d

fS(F )fT (P/F )

= fS∪{d}∪(T+(d+1))(P)

flag number of (d + e + 1)-dimensional polytope

Convolutions produce inequalities

If md is a nonnegative linear form in fS , S ⊆ {0, 1, . . . , d − 1},
and ne is a nonnegative linear form in fT , T ⊆ {0, 1, . . . , e − 1},
then md ∗ ne ≥ 0 for (d + e + 1)-polytopes.
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Ehrenborg’s lifting

Example

For a cd-word w , and a convex polytope P, write [w ] for the coefficient of
w in the cd-index of P.

Kalai’s rigidity inequality for 4-polytopes

f02(P)− 3f2(P) + f1(P)− 4f0(P) + 10 ≥ 0

can be written in terms of the cd-index, as

[dd ]− [ccd ]− [dcc] + 2[cccc] ≥ 0.

Ehrenborg lifting then gives:
For every cd-words u and v where u does not end in c and
deg u + deg v = n, for every (n + 4)-dimensional polytope

[uddv ]− [uccdv ]− [udccv ] + 2[uccccv ] ≥ 0.
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Flag vectors of 4-dimensional polytopes

toric h-vector and cd-index don’t give new linear inequalities for
4-polytopes

Ziegler

focus on fatness/complexity gives better understanding, suggests
directions and constructions

Fatness

F (P) =
f1 + f2 − 20

f0 + f3 − 10

5/2 ≤ F (P)
Is there an upper bound for F (P)?
Largest known F (P) < 9
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New results on 4-polytopes!

Paffenholz and Werner 2006

construction of infinite family of 4-polytopes that are 2-simplicial,
2-simple, and elementary
gives extreme ray of cone of flag vectors

Definitions

A polytope is 2-simplicial if every 2-face is a triangle.
A polytope is 2-simple if every edge is contained in exactly 3 facets.
A polytope P is elementary if f02(P)− 3f2(P) + f1(P)− 4f0(P) + 10 = 0

Other examples of 2-simplicial, 2-simple polytopes (Eppstein, Kuperberg,
Paffenholz, Ziegler)
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Recall inequalities on 4-dimensional polytopes

f0 ≥ 5
f3 ≥ 5
f02 − 3f2 ≥ 0 (equality for 2-simplicial)
f02 − 3f1 ≥ 0 (equality for 2-simple)
f02 − 3f2 + f1 − 4f0 + 10 ≥ 0 (equality for elementary)
6f1 − 6f0 − f02 ≥ 0
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More new results on 4-polytopes

Ling 2006

new nonlinear inequalities for flag vectors

(k − 1)f02 −
(

k + 1

2

)
f2 + f1 ≤

(
f0
2

)

2(k − 1)f02 − k(k + 1)f2 + (k2 − 3k + 4)f1 − k(k − 3)f0 ≤ 4

(
f0
2

)
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Difficulty

We do not know how to generate random combinatorial types of polytopes.

Note that the convex hull of a random set of points in Rd is a simplicial
polytope.

This makes it difficult to test conjectures, and even to come up with
conjectures.
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Further work—specialization

Special classes of polytopes

• cubical (Adin, Babson, G. Blind, R. Blind, Chan, Hetyei, Jockusch,
Joswig, Liu, Ziegler)

• k-simplicial, h-simple (Kalai, Paffenholz, Stenson, Werner, Ziegler)

• polytopes with symmetry (A’Campo-Neuen, Adin, Björner, Jorge,
Novik, Stanley)

• zonotopes and geometric lattices (B, Billera, Ehrenborg, Kung,
Nyman, Readdy, Stenson, Sturmfels, Swartz)

• 0/1 polytopes (Aichholzer, Bárány, Gatzouras, Giannopoulos, Kaibel,
Markoulakis, Pór, Ziegler)

• cyclic-like polytopes (B, Bisztriczky, Dinh, Smilansky)
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Cyclic-like polytopes

Generalizations of the simplex

multiplex
braxtope

Gale polytopes

facets satisfy “Gale’s evenness condition”

Generalizations of cyclic polytopes

simplicial and Gale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . cyclic polytope

multiplicial and Gale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ordinary polytope

braxial and Gale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . periodically cyclic
Gale polytope
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Further work—generalization

More general classes of partially ordered sets

• general graded posets (Billera, Hetyei, Liu)

• Eulerian posets (B, Billera, Chen, Ehrenborg, Hetyei, Jojić, Lau,
Readdy, Reading, Stanley)

• Eulerian manifolds (Björner, Charney, Chen, Davis, Hersh, Kalai,
Novik, Sparla, Yan)

• Gorenstein* lattices (Billera, Ehrenborg, Karu, Masuda, Murai,
Readdy, Reading, Stanley)

Connections with other mathematical structures

• toric varieties (Bressler, Bukhshtaber, Karu, Leung, Lunts, Panov,
Reiner, Stanley)

• coalgebras (Ehrenborg and Readdy)

• Hopf algebra of quasisymmetric functions (Aguiar, N. Bergeron,
Billera, Hsiao, Sottile, van Willigenburg)
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The end

THANK YOU!

http://www.math.ku.edu/~bayer
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