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1 Definitions and Fundamental Results

1.1 Introduction

A convex polyhedron is a subset of d that is the intersection of a finite number
of closed halfspaces. A bounded convex polyhedron is called a convex polytope.
Since most polyhedra under consideration will be convex, this adjective will
usually be omitted. Space limitations prevent a comprehensive survey of the
entire theory of polytopes; therefore, this chapter will concentrate primarily
upon some techniques that have been successful in analyzing their combinatorial
properties. Other aspects of the role of polytopes in convexity are treated in
some of the other chapters of this volume.

The following may be regarded as the fundamental theorem of convex poly-
topes.

Theorem 1.1 P ⊂ d is a polytope if and only if it is the convex hull of a
finite set of points in d.

The problem of developing algorithms to convert from one description of
a polytope to the other arises in mathematical programming and computa-
tional geometry. The above theorem and related results are foundational to
the theory of linear programming duality, and one of the central themes of
combinatorial optimization is to make this conversion for special polytopes re-
lated to specific programming problems. See, for example, Edelsbrunner [1987],
Preparata-Shamos [1985], and the chapters Geometric Aspects of Mathematical
Programming by Gritzmann and Klee and Convexity in Discrete Optimization
by Burkard in this volume.

1.2 Faces

The dimension, dim P , of a polyhedron P is the dimension of its affine span,
and a k-dimensional polyhedron is called a k-polyhedron for brevity. The faces
of P are , P , and the intersections of P with its supporting hyperplanes. The
empty set and P itself are improper faces; the other faces are proper. Each
face of P is itself a polyhedron, and a face of dimension j is called a j-face. If
dim P = d, faces of P of dimension 0, 1, d−2 and d−1 are called vertices, edges,
subfacets (or ridges), and facets , respectively. A polytope equals the convex
hull of its vertices. The f -vector of P is the vector f = (f0, f1, . . . , fd−1), where
fj = fj(P ) denotes the number of j-faces of P .

Theorem 1.2 The collection of all the faces of a polyhedron P , ordered by
inclusion, is a lattice.

This lattice is called the face lattice or boundary complex of P , and two
polytopes are (combinatorially) equivalent if their face lattices are isomorphic.
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Suppose F ⊂ G are two distinct faces of a polytope P . Then the interval [F, G]
is isomorphic to the face lattice of some polytope Q, called a quotient polytope
of P . In the case that G = P , we write Q = P/F .

1.3 Polarity and Duality

Suppose P ⊂ d is a d-polytope containing the origin o in its interior. Then
P ∗ = {x ∈ d : 〈x, y〉 ≤ 1 for all y ∈ P} is also a d-polytope, called the polar of
P (with respect to o).

Theorem 1.3 The face lattices of P and P ∗ are anti-isomorphic.

Two polytopes with anti-isomorphic face lattices are said to be dual. Two im-
portant dual classes of d-polytopes are the class of simplicial d-polytopes, those
for which every proper face is a simplex, and the class of simple d-polytopes,
those for which every vertex is incident to exactly d edges.

1.4 Overview

Our survey begins with a discussion of shellability (Section 2), an influential
notion which links early results in polytopes to some of the most important
recent achievements. In Section 3 we discuss the powerful tools in commutative
algebra and algebraic geometry which have so successfully and dramatically en-
riched the theory of polytopes; see also the chapter Algebraic Geometry and
Convexity by Ewald in this volume. Gale transforms, another early tool, and
their relationship to the blossoming theory of oriented matroids, are treated
in Section 4 (see also the chapter Oriented Matroids by Bokowski in this vol-
ume). Section 5 considers problems centered around the graphs (1-skeletons)
of polytopes, and we conclude with Section 6 which discusses some issues of
realizability and combinatorial types.

The standard reference for the foundation of the theory of polytopes and
results through 1967 is the influential book by Grünbaum [1967]. McMullen-
Shephard [1971] and Brøndsted [1983] are briefer introductions that also contain
more information on face numbers. For more on regular polytopes, see Coxeter
[1963]. Klee and Kleinschmidt [1991] give a comprehensive survey of results in
the combinatorial structure of polytopes.

2 Shellings

2.1 Introduction

A shelling of the boundary complex of a polytope is an ordering F1, F2, . . . , Fn

of its facets such that Fj ∩
⋃j−1

i=1 Fi is homeomorphic to a (d − 2)-dimensional
ball or sphere for all j, 2 ≤ j ≤ n. Many early “proofs” of Euler’s relation
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exploited the intuitively appealing and seemingly obvious property that every
polytope is shellable (see Grünbaum [1967]), but this was not established until
1971, and until then examples of nonshellable simplicial 3-balls had suggested
that in fact it might be false. See also Danaraj-Klee [1974], McMullen-Shephard
[1971], and Stillwell [1980].

Theorem 2.1 (Bruggesser-Mani [1971]) The facets of any d-polytope P

can be ordered F1, F2, . . . , Fn such that for all j, 2 ≤ j ≤ n − 1, Fj ∩
⋃j−1

i=1 Fi

is the union of the first k facets of Fj in some shelling of Fj , for some k,
0 < k < fd−2(Fj).

2.2 Euler’s Relation

Euler’s relation is the generalization of the familiar equation f0 − f1 + f2 = 2
for 3-polytopes, and provides a necessary condition for the f -vector.

Theorem 2.2 (Euler’s Relation, Poincaré [1893, 1899]) If P is a d-
polytope, then

d−1
∑

j=0

(−1)jfj = 1 − (−1)d.

Moreover, this is the only affine relation satisfied by all f -vectors of d-polytopes.

Refer to Grünbaum [1967] for the history of this result. Though there now
exist elementary combinatorial proofs of Euler’s relation, the fact that the first
real proof, by Poincaré, involved algebraic techniques, foreshadowed the recent
fruitful interaction among polytopes, commutative algebra, and algebraic geom-
etry.

In three dimensions, Euler’s relation with some simple inequalities charac-
terizes f -vectors of 3-polytopes.

Theorem 2.3 (Steinitz [1906]) A vector (f0, f1, f2) of nonnegative integers
is the f -vector of a 3-polytope if and only if the following three conditions hold.

i. f1 = f0 + f2 − 2.

ii. 4 ≤ f0 ≤ 2f2 − 4.

iii. 4 ≤ f2 ≤ 2f0 − 4.

On the other hand, for no d ≥ 4 has the set of all f -vectors of d-polytopes
been completely characterized, though considerable progress has been made in
the case d = 4—see Section 3.8.
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2.3 Line Shellings

To sketch the proof that a polytope P is shellable, without loss of generality
assume P = {x ∈ d : 〈ai, x〉 ≤ 1 for all i, 1 ≤ i ≤ n}, with ai normal to facet
Fi. Choose vector c ∈ d such that the inner products 〈c, ai〉 are all distinct.
Relabel the facets, if necessary, so that 〈c, a1〉 > 〈c, a2〉 > · · · > 〈c, an〉. Then
F1, F2, . . . , Fn is a shelling order, and is called a line shelling. Geometrically,
one begins at the origin, travels along a line L in the direction c, and lists the
facets of P in the order in which they become visible, i.e., in the order in which
the corresponding supporting hyperplanes are crossed. Then one returns from
the opposite direction, listing the facets on the other side of P in the order in
which they disappear from view. This idea can be generalized to curve shellings
in which one travels along an appropriate curve instead of a straight line.

That not all shellings are curve shellings is perhaps believable. In fact Smi-
lansky [1988] proves that there exist shellings of some d-polytope P such that for
no polytope Q combinatorially equivalent to P are the corresponding shellings
of Q curve shellings.

By exploiting line shellings, Seidel [1986] obtains an algorithm to compute
the convex hull of a finite set of points in affinely general position in logarithmic
cost per face.

2.4 Shellable Simplicial Complexes

The definition of shellability can be extended to more general complexes. A
simplicial complex ∆ is a nonempty collection of subsets of a finite set V such
that G ∈ ∆ whenever G ⊆ F for some F ∈ ∆. Members of ∆ are its faces
and the dimension dim F of a face F is |F | − 1. The dimension of ∆, dim ∆,
is max{dim F : F ∈ ∆}. So the boundary complex of a simplicial d-polytope is
a simplicial (d − 1)-complex. As with polytopes, faces of a simplicial (d − 1)-
complex of dimension 0, 1, d − 2 and d − 1 are called vertices, edges, subfacets
(or ridges), and facets of ∆, respectively.

To say ∆ is shellable means that all of its maximal faces are facets, and the
facets can be ordered F1, F2, . . . , Fn such that

Fm ∩

m−1
⋃

j=1

Fj =

km
⋃

j=1

Gmj for all m, 2 ≤ m ≤ n,

where Gm1, Gm2, . . . , Gmkm are km > 0 distinct subfacets of ∆ (facets of Fm)
for all m, 2 ≤ m ≤ n. Taking k0 = 0, the numbers km readily determine the
f -vector of ∆. For, let hi = card{m : km = i}. Then McMullen and Walkup
[1971] show

fj =

j+1
∑

i=0

(

d − i

d − j − 1

)

hi for all j, −1 ≤ j ≤ d − 1. (1)
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Because these equations are invertible,

hi =
i

∑

j=0

(−1)j−i

(

d − j

d − i

)

fj−1 for all i, 0 ≤ i ≤ d, (2)

the quantities hi are independent of the shelling order, and can in fact be de-
fined via Equation (2), even for nonshellable simplicial complexes or for more
general collections of subsets of a finite set. The vector h = (h0, h1, . . . , hd) is
the h-vector of ∆ and contains the same information as the f -vector. The above
discussion shows that h-vectors of shellable simplicial complexes are nonnega-
tive.

2.5 The Dehn-Sommerville Equations

Let P be a simplicial d-polytope containing o in its interior, and take a line
shelling F1, F2, . . . , Fn of P induced by a direction c. Then the vector −c induces
the shelling Fn, Fn−1, . . . , F1, showing that the shelling is reversible. Since each
subfacet is contained in exactly two facets, if facet Fm contributes to hi in the
first shelling, then it contributes to hd−i in the second. As a consequence of the
invariance of the h-vector, it must be symmetric.

Theorem 2.4 (Dehn-Sommerville Equations, Sommerville [1927])
For a simplicial d-polytope,

hi = hd−i for all i, 0 ≤ i ≤ d.

Equivalently,

fi =
d−1
∑

j=i

(−1)d−j−1

(

j + 1

i + 1

)

fj for all i, −1 ≤ i ≤ d − 2.

Moreover, any affine relation satisfied by all f -vectors of simplicial d-polytopes
is an affine combination of the above equations.

Hence the affine span of the set of all f -vectors of simplicial polytopes has
dimension bd/2c. Note that 1 = h0 = hd is equivalent to Euler’s relation. The
transformation of the f -vector into the h-vector and the above formulation of
the Dehn-Sommerville equations in terms of the h-vector was already known to
Sommerville, although he was not aware of the algebraic interpretation of the
h-vector (discussed in Section 3).

It is an easy matter to verify that if ∆ is a shellable simplicial (d−1)-complex
such that every subfacet is contained in exactly two facets, then such a complex
must be a p.l.-sphere and every shelling of ∆ is reversible. So it is easy to
see that the Dehn-Sommerville equations hold for shellable spheres as well. In
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fact, the first proofs of the Dehn-Sommerville equations did not depend upon
shellability and show that these equations hold for homological (d − 1)-spheres
as well as for some more general simplicial complexes. See Grünbaum [1967].

Although f -vectors of simplicial polytopes are not always unimodal, some
inequalities are a consequence of the Dehn-Sommerville equations.

Theorem 2.5 (Björner [1981]) The f -vector of a simplicial (d − 1)-sphere
satisfies

f0 < f1 < · · · < fbd/2c−1 ≤ fbd/2c

and
fb3(d−1)/4c > · · · > fd−2 > fd−1.

It turns out, however, that the h-vectors of simplicial polytopes are unimodal—
see Section 3.

The equations imply that the f -vector of the boundary of a triangulated
ball is determined by the f -vector of the ball itself (Section 4.3). Let Q be any
unbounded simple d-polyhedron with at least one vertex. Then there exists a
simplicial d-polytope P with a vertex v such that lattice of the nonempty faces
of Q is anti-isomorphic to the lattice of faces of P that do not contain v. The
next result is a consequence of this duality, and is mentioned in Billera-Lee
[1981a].

Theorem 2.6 If Q is a simple d-polyhedron with at least one vertex, then the
number of unbounded k-faces of Q equals

fk −
k

∑

j=0

(−1)j

(

d − j

d − k

)

fj , 1 ≤ k ≤ d − 1.

2.6 Completely Unimodal Numberings and Orientations

Returning to P and the line shelling induced by c as in Section 2.3, let Q be the
simple d-polytope that is the polar of P . Any given acyclic orientation of the
edges of Q and any given numbering of the vertices of Q from 1 to n are said to
be consistent provided the edges are oriented from lower-numbered vertices to
higher-numbered vertices. Associated with any numbering is a unique consistent
orientation, and associated with any acyclic orientation is at least one consistent
numbering.

Our indexing of the facets of P implies that 〈c, ai〉 > 〈c, aj〉 if and only if
i < j. Label the vertex ai of Q with the number i, i = 1, . . . , n, and consider
the associated consistent orientation. Then hi equals the number of vertices of
Q having in-degree i, as well as the number of vertices having out-degree i.

This numbering of vertices also has the property that for every k-face of
Q, 2 ≤ k ≤ d, the restriction of the associated consistent orientation to that
face has a unique vertex of in-degree zero. Any numbering of the vertices of Q
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possessing the above property will be called completely unimodal, and an acyclic
orientation is said to be completely unimodal if any (equivalently, all) consistent
numberings are completely unimodal. Such numberings and orientations may
be regarded as abstract objective functions. See also Brøndsted [1983].

Theorem 2.7 (Williamson Hoke [1988]) The following are equivalent for a
given numbering of the vertices of Q:

i. The numbering is completely unimodal.

ii. hi equals the number of vertices having in-degree (out-degree) i in the
associated consistent orientation.

iii. For all k, 1 ≤ k ≤ n, and any face F , the edge-graph induced by the set of
vertices on F numbered less than (greater than) k is connected.

iv. The induced ordering of the facets of P is a (not necessarily curve) shell-
ing.

v. In every k-face of P , 2 ≤ k ≤ d, there is a unique vertex of in-degree
(out-degree) zero with respect to the induced consistent orientation of the
edges of that face.

Kalai characterizes completely unimodal orientations in the case that the
edge-graph of a simple d-polytope Q is given, but otherwise its facial structure
is unknown. For any acyclic orientation O of the graph, let hO

k be the number
of vertices with in-degree k. Define fO = hO

0 + 2hO
1 + 4hO

2 + · · · + 2dhO
d .

Theorem 2.8 (Kalai [1988c]) The following are equivalent for an acyclic ori-
entation O∗.

i. O∗ is completely unimodal.

ii. fO∗

minimizes fO over all acyclic orientations.

iii. fO∗

equals the total number of nonempty faces of Q.

From this Kalai obtains a new proof of a result first established by Blind
and Mani-Levitska.

Theorem 2.9 (Blind - Mani-Levitska [1987]) The edge-graph of a simple
polytope completely determines its entire combinatorial structure.
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2.7 The Upper Bound Theorem

Given integers d ≥ 2 and n ≥ d+1, take the convex hull of any n distinct points
on the moment curve (t, t2, . . . , td). The combinatorial structure of the resulting
simplicial d-polytope C(n, d) is independent of the actual choice of points, and
this polytope is referred to as the cyclic d-polytope with n vertices. It turns
out that every subset of k ≤ d/2 vertices of C(n, d) forms a face (C(n, d) is
neighborly), so it was conjectured that this polytope has the largest number
of faces of all dimensions of all convex d-polytopes with n vertices. Explicit
formulas for fj(C(n, d)) can be found in Brøndsted [1983], Grünbaum [1967],
or McMullen-Shephard [1971]; we mention that

fd−1(C(n, d)) =

(

n − b 1
2 (d + 1)c

n − d

)

+

(

n − b 1
2 (d + 2)c

n − d

)

.

Theorem 2.10 (Upper Bound Theorem, McMullen [1970]) Let P be a
d-polytope with n vertices. Then fj(P ) ≤ fj(C(n, d)) for all j, 1 ≤ j ≤ d − 1.

A perturbation argument shows that it suffices to prove this result for simpli-
cial d-polytopes. McMullen uses properties of line shellings to show that hi(P ) ≤
(

n−d+i−1
i

)

for all i, 0 ≤ i ≤ d. But the fact that hi(C(n, d)) =
(

n−d+i−1
i

)

for
all i, 0 ≤ i ≤ bd/2c, together with the Dehn-Sommerville equations, imply that
hi(P ) ≤ hi(C(n, d)) for all i, 0 ≤ i ≤ d. The result now follows immediately
from the observation that the fj are nonnegative combinations of the hi. See
McMullen-Shephard [1971] for an account of the solution of the Upper Bound
Conjecture. The proof can also be found in Brøndsted [1983].

2.8 The Lower Bound Theorem

Starting with a d-simplex, one can add new vertices by building shallow pyra-
mids over facets to obtain a simplicial convex d-polytope with n vertices, called
a stacked polytope. If P (n, d) is such a polytope, then

fj =

{ (

d
j

)

n −
(

d+1
j+1

)

j, if 0 ≤ j ≤ d − 2,

(d − 1)n − (d + 1)(d − 2), if j = d − 1.

It was conjectured that no simplicial d-polytope with n vertices can have
fewer faces than P (n, d), and a certain reduction implied that it was sufficient
to show this result for f1. Barnette proved this conjecture about the same time
that McMullen established the Upper Bound Theorem. Barnette’s argument
does not use the full strength of shellability, but relies upon a weaker ordering
of the facets of the dual simple polytope. The proof also appears in Brøndsted
[1983].
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Theorem 2.11 (Lower Bound Theorem, Barnette [1971, 1973]) Let P
be a simplicial d-polytope with n vertices and P (n, d) be a stacked d-polytope
with n vertices. Then

fj(P ) ≥ fj(P (n, d)) for all j, 1 ≤ j ≤ d − 1. (3)

Moreover, if d ≥ 4 and equality occurs in (3) for any one value of j, then P
must itself be stacked.

The case of equality for j = d − 1 was proved by Barnette and for the remain-
ing values of j by Billera and Lee [1981b]. Connections between the Lower
Bound Theorem and rigidity were discovered by Kalai and will be discussed in
Section 3.13.

Another type of lower bound theorem was proved by Blind and Blind. Write
Cd for the d-cube.

Theorem 2.12 (Blind-Blind [1990]) Let P be a d-polytope with no triangu-
lar faces. Then

fj(P ) ≥ fj(C
d) for all j, 0 ≤ j ≤ d − 1. (4)

Moreover, if equality occurs in (4) for any one value of j, then P must itself be
a d-cube.

2.9 Constructions Using Shellings

Given any two positive integers h and i, there is a unique sequence of integers
ni > ni−1 > · · · > nj ≥ j ≥ 1 such that

h =

(

ni

i

)

+

(

ni−1

i − 1

)

+ · · · +

(

nj

j

)

.

The ith pseudopower of h is then defined as

h<i> =

(

ni + 1

i + 1

)

+

(

ni−1 + 1

i

)

+ · · · +

(

nj + 1

j + 1

)

.

For convenience we define 0<i> to be 0 for any positive integer i.
Stanley characterized the h-vectors (and hence the f -vectors) of shellable

simplicial complexes.

Theorem 2.13 (Stanley [1977]) A vector h = (h0, h1, . . . , hd) of nonnega-
tive integers is the h-vector of some shellable simplicial (d − 1)-complex if and
only if h0 = 1 and hi+1 ≤ h<i>

i for all i, 1 ≤ i ≤ d − 1.
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The algebraic methods that imply the necessity of these conditions are dis-
cussed in Section 3.2. But the sufficiency is much more straightforward. Given
h satisfying the pseudopower conditions, let n = h1 + d and V = {1, 2, . . . , n}.
Take F to be the collection of all subsets of V of cardinality d, and Fi be those
members F of F such that d + 1− i is the smallest element of V not in F . For
two members F and G of F , say F < G if the largest element of V in their
symmetric difference is in G. For each i, 0 ≤ i ≤ d, choose the first (in the given
ordering) hi members of Fi. The resulting collection C consists of the facets
of the desired shellable complex, and the given ordering induces the shelling
order. This result and the accompanying construction are reminiscent of the
characterization of the f -vectors of arbitrary simplicial complexes by Kruskal
[1963] and Katona [1968].

Now suppose we have a vector h = (h0, h1, . . . , hd) of nonnegative integers
such that hi = hd−i for all i, 1 ≤ i ≤ d, and hi+1 − hi ≤ (hi − hi−1)

<i> for
all i, 1 ≤ i ≤ bd/2 − 1c. These are known as the McMullen conditions; see
Section 3.4. Billera and Lee [1981b] show how to extend the above construction
to obtain a shellable d-ball whose boundary is a simplicial (d−1)-sphere having
h-vector h. Set n = h1 + d, V = {1, 2, . . . , n}, and regard V as the set of
vertices of a cyclic (d + 1)-polytope C(n, d + 1) with n vertices. For all i,
1 ≤ i ≤ bd/2c, define Fi to be the collection of all subsets F of V of cardinality
d+1 corresponding to facets of the cyclic polytope C(n, d+1) such that d+2−2i
is the smallest element of V not in F . For two members F and G of Fi, say
F < G if the largest element of V in their symmetric difference is in G. For
each i, 0 ≤ i ≤ bd/2c, choose the first (in the given ordering) hi−hi−1 members
of Fi (with the convention that h−1 = 0). The resulting collection C consists
of the facets of a d-ball ∆ which are shellable in the given ordering. Further,
h(∆) = (h0, h1 − h0, h2 − h1, . . . , hbd/2c − hbd/2c−1, 0, 0, . . . , 0), whence the h-
vector of the boundary ∂∆ of ∆ equals (h0, h1, . . . , hd) (see Equation (4.9) of
Section 4.3). In fact, ∂∆ can be realized as the boundary of a simplicial convex
d-polytope; see Section 3.4.

Kalai generalizes this construction to prove that there are many simplicial
spheres.

Theorem 2.14 (Kalai [1988a]) For fixed d, the number of combinatorial

types of triangulated (d − 1)-spheres with n vertices is between ebnb(d−1)/2c

and

ncnbd/2c

, where b and c are positive constants.

A comparison with Theorem 6.3 shows that there are many more simplicial
spheres than polytopes.

2.10 Notes

Geometric analogues of Euler’s relation and the Dehn-Sommerville equations
can be found in Grünbaum [1967]. Lawrence [1991] uses relatives of these to
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show that the volume of a polytope described by rational inequalities is not
polynomially expressible in terms of the describing data.

The class of boundary complexes of simplicial polytopes is contained in the
class of shellable spheres, which is contained in the class of p.l.-spheres, which is
contained in the class of topological spheres, which is contained in the class of ho-
mological spheres. All inclusions are proper. For example, there exist shellable
spheres that are not polytopal (Danaraj-Klee [1978b]), and the nondecidability
result of Volojin, Kuznetsov and Fomenko [1974] for determining whether or
not a given complex is a p.l.-sphere implies that nonshellable p.l.-spheres must
exist (see Mandel [1982]).

In two dimensions the situation is somewhat simpler; see Danaraj-Klee
[1978a], Grünbaum [1967], and Section 5.2.

Theorem 2.15 The following conditions are equivalent for a 2-complex.

i. The complex is polytopal.

ii. The complex is a sphere.

iii. The complex is a shellable closed pseudomanifold.

In three dimensions, all simplicial 3-spheres with at most 9 vertices are
shellable (Danaraj-Klee [1978b]).

3 Algebraic Methods

3.1 Introduction

In this section we explore the developing relationship between techniques in
commutative algebra and algebraic geometry and results in the combinatorial
structure of polytopes. This interaction was launched by Stanley’s use of the
Stanley-Reisner ring to extend the Upper Bound Theorem to simplicial spheres,
and was further propelled by Stanley’s short and dramatic proof of the Mc-
Mullen conditions based upon connections between the Stanley-Reisner ring of
a polytope and the cohomology of an associated toric variety.

3.2 The Stanley-Reisner Ring

The Stanley-Reisner ring of a simplicial complex encodes the simplices of the
complex as monomials. Reisner’s Theorem allows a translation of topological
properties of the complex into algebraic properties of the ring. In particular, the
Stanley-Reisner ring of the boundary complex of a simplicial convex polytope
is Cohen-Macaulay. This is what enabled Stanley to prove the Upper Bound
Theorem for simplicial spheres. He also used it in his proof of the necessity of
the McMullen conditions. In what follows k is a fixed infinite field.
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Let ∆ be a simplicial complex with vertices v1, v2, . . . , vn, each sim-
plex (face) being identified with its set of vertices. In the polynomial ring
k[x1, x2, . . . , xn], let I∆ be the ideal generated by all monomials xi1xi2 · · ·xis

such that {vi1 , vi2 , . . . , vis} 6∈ ∆. The Stanley-Reisner ring (or face ring) of ∆
is the quotient ring R∆ = k[x1, x2, . . . , xn]/I∆. See Stanley [1975].

Let Rm be the vector subspace of R∆ generated by the monomials of degree
m in R∆. This gives a grading of the Stanley-Reisner ring, R∆ =

⊕

m≥0 Rm.
As a k-algebra R∆ is generated by the monomials of R1, that is, by the variables
x1, x2, . . . , xn themselves. The graded component Rm is spanned by the degree
m monomials whose supports are in the complex. The number of monomials
of degree m with given support depends only on the size of the support. Thus
we can write the Hilbert function of the graded algebra in terms of the f -
vector of the complex. The Hilbert function of the graded algebra R∆ is the
function H : → given by Hm = H(R∆, m) = dimk Rm. If ∆ is a simplicial
complex of dimension d− 1 (for example, the boundary complex of a simplicial
d-polytope) then (Stanley [1975])

H(R∆, m) =











1, if m = 0,
d−1
∑

i=0

(

m − 1

i

)

fi, if m > 0.
(5)

Macaulay essentially gives a numerical characterization of the Hilbert func-
tions of graded algebras generated by their degree 1 elements. Recall the defi-
nition of pseudopower given in Section 2.9.

Theorem 3.1 (Macaulay [1927]) H0, H1, H2, . . . is the Hilbert function of a
graded algebra generated by degree 1 elements if and only if H0 = 1 and, for
m > 0, 0 ≤ Hm+1 ≤ H<m>

m .

We could apply Macaulay’s theorem to the Hilbert function of the Stanley-
Reisner ring to get inequalities on the f -vectors of simplicial complexes. We are
interested primarily in polytopes (or spheres), and in this case the inequalities
say little. Instead we wish to apply Macaulay’s theorem to a quotient of the
Stanley-Reisner ring.

A graded ring is called Cohen-Macaulay if its Krull dimension equals its
depth. We do not have the space to elaborate on this; for more information see
Stanley [1975]. We note only the following property of Cohen-Macaulay rings.
If a graded k-algebra R of the above form is Cohen-Macaulay of dimension d,
then R has linear (degree 1) elements θ1, θ2, . . . , θd such that R is a finitely
generated, free module over k[θ1, θ2, . . . , θd]. In this case the Hilbert function h
of the quotient algebra R/(θ1, θ2, . . . , θd) is related to the Hilbert function H of
R by the following simple relationship:

d
∑

i=0

hit
i = (1 − t)d

∞
∑

i=0

Hit
i.
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We apply this to the Stanley-Reisner ring of a simplicial sphere. The theorem
of Reisner [1976] gives a topological criterion for the face ring of a simplicial
complex to be Cohen-Macaulay. In particular, the Stanley-Reisner ring of a
sphere is Cohen-Macaulay. The same is true for a shellable complex; see Kind-
Kleinschmidt [1979] for a more elementary proof. The Hilbert function of the
quotient algebra R/(θ1, θ2, . . . , θd), like that of R itself, can be expressed in
terms of the f -vector of the simplicial complex. The Hilbert function of the
quotient turns out to be the h-vector, and in fact is given by Equation (2) of
Section 2.4. Recall that the Dehn-Sommerville equations for simplicial convex
polytopes have the simple form hi = hd−i.

Now Macaulay’s theorem can be applied to the quotient algebra
R/(θ1, θ2, . . . , θd), whose Hilbert function is the h-vector. This gives the re-
lations h0 = 1 and, for m > 0, 0 ≤ hm+1 ≤ h<m>

m .
These inequalities imply the following: for a simplicial d-polytope and for

0 ≤ i ≤ d/2,

hi ≤

(

n − d + i − 1

i

)

.

These inequalities imply the Upper Bound Theorem for simplicial spheres. The
Upper Bound Theorem was first proved by McMullen for simplicial polytopes
(see Section 2.7). It was proved for arbitrary simplicial spheres by Stanley [1975]
using the method outlined here.

3.3 Toric Varieties

After he introduced the face ring of a simplicial complex and proved the Upper
Bound Theorem for simplicial spheres, Stanley learned of a connection with
algebraic geometry.

A certain type of algebraic variety, a projective toric variety, comes equipped
with a moment map into real Euclidean space. The image of this map is a ratio-
nal convex polytope (rationality here refers to the coordinates of the vertices).
When the toric variety has only relatively mild singularities, the corresponding
polytope is simplicial. From the combinatorial viewpoint, rationality places no
restriction on simplicial polytopes—every simplicial polytope is combinatori-
ally equivalent to a rational polytope. This is not the case for nonsimplicial
polytopes—there are combinatorial types of polytopes not realized by any ra-
tional polytope (see Sections 4.2 and 6.5).

The toric variety can be described explicitly in terms of the convex poly-
tope. See Fine [1985] and the chapter Algebraic Geometry and Convexity
by Ewald in this volume. Let P be a convex d-polytope with vertex set
V = {v1, v2, . . . , vn} ⊂ d. Any affine dependence on V with integer coefficients
can be written in the form

∑n
i=1 bivi =

∑n
i=1 civi, where for all i, bi, ci ∈ and

∑n
i=1 bi =

∑n
i=1 ci. Let AP be the set of pairs (b, c) of coefficient vectors arising

in this manner. Using the notation xb = xb1
1 xb2

2 · · ·xbn
n , with the convention
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00 = 1, define EP to be

EP = {x ∈ n : xb = xc for all (b, c) ∈ AP }.

Although AP is an infinite set, for a rational polytope P it is a finitely generated
semigroup. Thus EP is a subset of n defined by a finite number of polynomial
equations, hence is an algebraic variety. Finally EP is “projectivized”: we define
TP to be EP \ {0} modulo the relation x ∼ y if and only if x = λy for some
λ ∈ ∗. This is the toric variety associated with the polytope P (though not
precisely the variety discussed by Danilov [1978]).

The cohomology ring of TP for simplicial (rational) polytopes P is com-
puted by Danilov [1978]. It turns out to be isomorphic to the quotient
A∆ = R∆/(θ1, θ2, . . . , θd) =

⊕

m≥0 Am of the Stanley-Reisner ring modulo a
certain linear system of parameters (here ∆ is the boundary complex of P ).
Later Saito [1985] proved that the Hard Lefschetz Theorem holds for the va-
rieties TP (P simplicial). This ensures the existence of an element ω ∈ A1,

called a hyperplane section, such that the maps Ai
×ω
→ Ai+1 are injective for all

i, 0 ≤ i ≤ (d − 1)/2. Thus A∆/ω is a graded algebra with Hilbert function
H(A∆/ω, m) = hm − hm−1 for 0 ≤ m ≤ d/2.

3.4 The McMullen Conditions

We are now able to state the major theorem, conjectured by McMullen [1971]
and proved by Billera and Lee [1981b] and Stanley [1980b].

Theorem 3.2 (The McMullen Conditions) A vector (h0, h1, . . . , hd) ∈
d+1 is the h-vector of a simplicial polytope if and only if

i. hi = hd−i for all i, 0 ≤ i ≤ d.

ii. h0 = 1, and hi ≤ hi+1 for all i, 0 ≤ i ≤ d/2 − 1.

iii. hi+1 − hi ≤ (hi − hi−1)
<i> for all i, 1 ≤ i ≤ d/2− 1.

Since the h-vector and f -vector are linearly equivalent, this theorem character-
izes the f -vectors of simplicial polytopes. Of course, it also characterizes the
f -vectors of simple polytopes, which are obtained by reversing the f -vectors of
simplicial polytopes.

The “sufficiency” was proved constructively by Billera and Lee. They use a
monomial algebra with Hilbert function hi −hi−1 to select a certain subset C of
facets of the cyclic polytope C(n, d + 1) as described in Section 2.9. Then they
show that by selecting points (ti, t

2
i , . . . , t

d+1
i ) on the moment curve such that

t1 � t2 � · · · � tn, one can place a new point v beyond precisely the facets in
C. The construction is completed by taking the convex hull Q of C(n, d+1) and
v and passing to the vertex figure of v (the intersection of Q with a hyperplane
strictly separating v from the other vertices of Q).
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The “necessity” of the McMullen conditions, i.e., that all h-vectors of sim-
plicial polytopes satisfy (i–iii), was proved by Stanley using toric varieties, as
outlined in Section 3.3. Note that condition (i) (the Dehn-Sommerville equa-
tions) reflects Poincaré duality of the cohomology of the toric variety, but we
have seen much simpler proofs (Section 2.5).

Stanley’s proof of the necessity of the McMullen conditions is unsatisfying for
several reasons. One reason is that the Hard Lefschetz Theorem, which is crucial
to the proof, lies well beyond combinatorics. The proof depends heavily on the
specific geometry of the polytope’s embedding, not just on its combinatorial
structure. In particular, it does not prove the McMullen conditions for h-vectors
of simplicial spheres that are not polytopal (see Section 6.5). McMullen himself
did not know of the toric variety connection when he made his conjecture.
His idea arose from consideration of the geometry of polytopes coded in Gale
diagrams (see Section 4).

3.5 Polytope Pairs

The McMullen conditions provide a characterization of the f -vectors of sim-
ple polytopes, which arise naturally in optimization. In this context it is also
natural to ask about unbounded polyhedra. Just as duality establishes a corre-
spondence between simple polytopes and simplicial polytopes, so also is there
a correspondence between unbounded simple polyhedra and simplicial polytope
pairs.

A (simple) polytope pair of type (d, v, d′, v′) is a pair (P ∗, F ∗), where P ∗ is a
simple convex d-polytope with v facets and F ∗ is a d′-face of P ∗ with v′ facets.

Associated with a polytope pair (P ∗, F ∗) is an unbounded simple d-
polyhedron Q∗, obtained by applying a projective transformation that sends
a supporting hyperplane for F ∗ onto the hyperplane at infinity. The polyhe-
dron Q∗ has recession cone of dimension d′+1. Conversely, every simple, pointed
convex d-polyhedron with (d′ + 1)-dimensional recession cone can be associated
to some polytope pair of type (d, v, d′, v′), for some v and v′.

Methods for facial enumeration in simplicial polytopes were used by Klee
[1974], Billera and Lee [1981a], Lee [1984], and Barnette, Kleinschmidt, and Lee
[1986] to develop bounds on the numbers of faces of polytope pairs. The pairs
are first dualized.

Let k = d−d′ and r = d−d′+v′. The dual of a simple polytope pair (P ∗, F ∗)
of type (d, v, d′, v′) is a simplicial polytope pair (P, F ) of type (d, v, k, r), where
P is a simplicial convex d-polytope with v vertices, and F is a (k − 1)-face of
P contained in r − k k-faces of P . Let Γ = ∂P \ F , the simplicial complex
obtained by deleting the face F (and all faces containing F ) from the simplicial
complex ∂P , the boundary of P . The faces of the boundary ∂Γ of Γ correspond
to the unbounded faces of Q∗. Thus to estimate the numbers of bounded and
unbounded faces of Q∗ we use estimates on the numbers of faces (or h-vectors)
of P and Γ.
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Theorem 3.3 (Upper Bound Theorem for Polytope Pairs) Let 3 ≤
d < r ≤ v and 1 ≤ k ≤ d − 2. Put n = bd/2c. Let (P, F ) range over all
(simplicial) polytope pairs of type (d, v, k, r), taking Γ = ∂P \ F .

i. If 1 ≤ k ≤ (d − 1)/2 then

maxhi(P ) =



















(

v−d+i−1
i

)

, if 0 ≤ i ≤ k,
(

v−d+i−1
i

)

−
(

v−d+i−k−1
i−k

)

+
(

r−d+i−k−1
i−k

)

, if k + 1 ≤ i ≤ n,
(

v−i−1
d−i

)

−
(

v−i−k−1
d−i−k

)

+
(

r−i−k−1
d−i−k

)

, if n + 1 ≤ i ≤ d − k − 1,
(

v−i−1
d−i

)

, if d − k ≤ i ≤ d.

maxhi(Γ) =



























(

v−d+i−1
i

)

, if 0 ≤ i ≤ k − 1,
(

v−d+i−1
i

)

−
(

v−d+i−k−1
i−k

)

, if k ≤ i ≤ n,
(

v−i−1
d−i

)

−
(

v−i−k−1
d−i−k

)

, if n + 1 ≤ i ≤ d − k − 1,
(

v−i−1
d−i

)

− r + d, if d − k ≤ i ≤ d − 1,

0, if i = d.

ii. If (d − 1)/2 < k ≤ d − 2 then

max hi(P ) =

{ (

v−d+i−1
i

)

, if 0 ≤ i ≤ n,
(

v−i−1
d−1

)

, if n + 1 ≤ i ≤ d.

max hi(Γ) =























(

v−d+i−1
i

)

, if 0 ≤ i ≤ n,
(

v−i−1
d−i

)

, if n + 1 ≤ i ≤ k − 1,
(

v−i−1
d−i

)

− 1, if i = k,
(

v−i−1
d−i

)

− r + d, if k + 1 ≤ i ≤ d − 1,

0, if i = d.

Moreover, for each of the parts of (i) and (ii), the maxima are simultaneously
achievable.

Theorem 3.4 (Lower Bound Theorem for Polytope Pairs) Let 4 ≤ d <
r ≤ v and 2 ≤ k ≤ d− 2. Put n = bd/2c and m = b(d− k)/2c. Let (P, F ) range
over all (simplicial) polytope pairs of type (d, v, k, r), taking Γ = ∂P \ F .

min hi(P ) =

{

1, if i = 0,
v − d, if 1 ≤ i ≤ n.

(6)

min hi(Γ) =























1, if i = 0,
v − d, if 1 ≤ i ≤ k − 1,
v − d − 1, if i = k,
v − r, if k + 1 ≤ i ≤ d − 1,
0, if i = d.

(7)
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For k = 1 and 3 ≤ d < r ≤ v, equation (6) stays the same, but (7) becomes

min hi(Γ) =















1, if i = 0
v − d − 1, if i = 1
v − r, if 2 ≤ i ≤ d − 1
0, if i = d.

All bounds can be achieved.

Theorems 3.3 and 3.4 are proved in Barnette, Kleinschmidt and Lee [1986]
and Lee [1984], respectively. Theorem 3.3 applies as well to the case when P is
an arbitrary simplicial sphere, but the lower bounds of Theorem 3.4 depend in
an essential way upon the McMullen conditions.

3.6 Centrally Symmetric Simplicial Polytopes

A d-polytope P in d is centrally symmetric if for all points v in P , −v is
also in P . Björner conjectured (unpublished) that the h-vector of any centrally
symmetric simplicial polytope satisfies the inequality hi − hi−1 ≥

(

d
i

)

−
(

d
i−1

)

for all i, 1 ≤ i ≤ d/2. Stanley [1987b] proves this conjecture using the con-
nection with toric varieties. This also proves lower bounds on the f -vectors
of centrally symmetric simplicial polytopes, conjectured earlier by Bárány and
Lovász [1982].

Any centrally symmetric simplicial d-polytope is combinatorially equivalent
to a centrally symmetric simplicial d-polytope with rational vertices. The asso-
ciated toric variety TP and its cohomology ring inherit the action of the group
of order 2 on the polytope P by virtue of central symmetry. Furthermore, this
group action on the cohomology ring commutes with multiplication by the hy-
perplane section ω (see Section 3.3). So the cohomology ring decomposes as a
direct sum of two graded vector spaces (one of which is a ring, the other of which
is a module over this ring), on each of which multiplication by ω is injective.
This gives Stanley’s theorem.

Theorem 3.5 (Stanley [1987]) If P is a centrally symmetric simplicial d-
polytope, then

hi(P ) − hi−1(P ) ≥

(

d

i

)

−

(

d

i − 1

)

for all i, 1 ≤ i ≤ d/2.

We summarize some consequences of this theorem.

Corollary 3.6 Let P be a centrally symmetric simplicial d-polytope, and let
(h0, h1, . . . , hd) be its h-vector.

i. hi ≥
(

d
i

)

, for all i, 0 ≤ i ≤ d.

ii. fi ≥ 2i+1
(

d
i+1

)

+ 2(n − d)
(

d
i

)

, for all i, 0 ≤ i ≤ d − 2.
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iii. fd−1 ≥ 2d + 2(n − d)(d − 1).

iv. If for some i, 1 ≤ i ≤ d − 1, hi(P ) =
(

d
i

)

, then hj(P ) =
(

d
j

)

for all j, and
P is affinely equivalent to a crosspolytope.

Part (i) of the corollary was first conjectured by Björner; parts (ii) and (iii)
are the conjecture of Bárány and Lovász.

3.7 Flag Vectors

In the previous sections of this chapter, the results on f -vectors of simplicial
polytopes stemmed from interpretations of the h-vectors of the polytopes. One
could define the h-vector of a nonsimplicial polytope by the same linear trans-
formation of the f -vector, but none of the interpretations of h-vectors would
continue to hold. In fact the vector so defined has negative components for
some nonsimplicial polytopes. Furthermore, the f -vector captures much less
of the combinatorial structure of a nonsimplicial than of a simplicial polytope.
Thus in the study of arbitrary polytopes, attention has focused on other param-
eters.

The one that most directly generalizes the f -vector is the flag vector. Let
P be a d-polytope. A chain of faces of P , ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fk ⊂ P ,
is called an S-flag, where S = {dim Fi: 1 ≤ i ≤ k}. The number of S-flags
of P is denoted fS(P ), and together these flag numbers form the flag vector,

(fS(P ))S ⊆ {0, 1, . . . , d − 1} ⊆ 2d

. When writing a specific flag number we will
drop the set brackets from the subscript. The f -vector is the projection of the
flag vector onto the components with singleton indices. A flag number fS of a
d-simplex is a product of binomial coefficients depending only on d and S. Thus
a flag number fS(P ) of a simplicial d-polytope P depends only on the number
of faces whose dimension is the largest element of S (and on d and S).

The problem of characterizing the f -vectors of polytopes extends to the
problem of characterizing the flag vectors of polytopes. The main result on this
problem is the specification of the affine hull of the flag vectors of polytopes of
fixed dimension.

Theorem 3.7 (Bayer-Billera [1985]) The affine dimension of the flag vec-
tors of d-polytopes is ed − 1, where (ed) is the Fibonacci sequence, ed =
ed−1 + ed−2, e0 = e1 = 1. The affine hull of the flag vectors is determined
by the equations

k−1
∑

j=i+1

(−1)j−i−1fS∪{j}(P ) =
(

1 − (−1)k−i−1
)

fS(P ),

where i ≤ k − 2, i, k ∈ S ∪ {−1, d}, and S contains no integer between i and k.
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These equations are called the generalized Dehn-Sommerville equations ; their
proof is similar to Sommerville’s original proof of the Dehn-Sommerville equa-
tions for simplicial polytopes. For polytopes of dimension three, the generalized
Dehn-Sommerville equations imply that the flag vector depends linearly on the
f -vector. Thus Steinitz’s characterization of the f -vectors of 3-polytopes (The-
orem 2.3) extends to a characterization of the flag vectors of 3-polytopes.

Some inequalities are known to hold for the flag vectors of all polytopes. The
most important of these was proved by Kalai using stress (see Section 3.13).

Theorem 3.8 (Kalai [1987]) For all d-polytopes P

f02(P ) − 3f2(P ) + f1(P ) − df0(P ) +

(

d + 1

2

)

≥ 0.

The flag vector of a d-polytope P is a refinement of the f -vector of a simpli-
cial d-polytope ∆(P ), called the barycentric subdivision of P (see Section 6.6);
the relationship is fi(∆(P )) =

∑

|S|=i+1 fS(P ). The McMullen conditions ap-
plied to the barycentric subdivision thus give inequalities on the flag vector of
the original polytope, but these are not sharp. The barycentric subdivision of a
polytope is an example of a completely balanced sphere, studied in Stanley [1979].
There Stanley defined a refined or extended h-vector of a completely balanced
sphere (see Sections 3.11 and 6.6). This extended h-vector is the Hilbert func-
tion of the Stanley-Reisner ring with respect to a fine grading. Unfortunately,
no analogue of the Macaulay theorem (Theorem 3.1) is known for the extended
h-vector. The extended h-vector of a shellable completely balanced sphere can
also be calculated from a shelling.

3.8 Dimension Four

Four is the lowest dimension for which f -vectors of polytopes have not been
characterized, and the same is true of flag vectors. In the late sixties and
early seventies, f -vectors of 4-polytopes were studied intensively, resulting in
the characterizations of the projections of f -vectors of 4-polytopes onto all pairs
of components (Grünbaum [1967], Barnette-Reay [1973], Barnette [1974]). By
duality only four projections need be determined.

Theorem 3.9

i. There exists a 4-polytope P with (f0(P ), f1(P )) = (f0, f1) if and only if
f0 and f1 are integers satisfying

10 ≤ 2f0 ≤ f1 ≤

(

f0

2

)

and (f0, f1) 6∈ {(6, 12), (7, 14), (8, 17), (10, 20)}.
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ii. There exists a 4-polytope P with (f0(P ), f2(P )) = (f0, f2) if and only if
f0 and f2 are integers satisfying

1/2
(

2f0 + 3 + (8f0 + 9)1/2
)

≤ f2 ≤ f2
0 − 3f0,

f2 6= f2
0 − 3f0 − 1, and (f0, f2) 6∈ {(6, 12), (6, 14), (7, 13), (7, 15), (8, 15),

(8, 16), (9, 16), (10, 17), (11, 20), (13, 21)}.

iii. There exists a 4-polytope P with (f0(P ), f3(P )) = (f0, f3) if and only if
f0 and f3 are integers satisfying

5 ≤ f0 ≤ f3(f3 − 3)/2 and 5 ≤ f3 ≤ f0(f0 − 3)/2.

iv. There exists a 4-polytope P with (f1(P ), f2(P )) = (f1, f2) if and only if
f1 and f2 are integers satisfying

f2 ≥ f1/2 + d
√

f1 + 9/4 + 1/2e+ 1/2,

the pair (f1, f2) does not equal
(

i2 − 3i − 1, (i2 − i)/2
)

for any i, and
(f1, f2) 6∈ {(12, 12), (14, 13), (14, 14), (15, 15), (16, 15), (17, 15), (17, 16),
(18, 18), (20, 17), (21, 19), (23, 20), (24, 20), (26, 21)}.

The original proofs that the inequalities are satisfied by the f -vectors of 4-
polytopes used arguments about chains of faces. The introduction of flag vectors
thus simplifies the exposition of the proofs.

Here are the inequalities known to hold for the flag vectors of all 4-polytopes
(Bayer [1987]).

Theorem 3.10 Let f0, f1, f2 and f02 be flag numbers of a 4-polytope. Then

i. f02 − 3f2 ≥ 0.

ii. f02 − 3f1 ≥ 0.

iii. f02 − 3f2 + f1 − 4f0 + 10 ≥ 0.

iv. 6f1 − 6f0 − f02 ≥ 0.

v. f0 − 5 ≥ 0.

vi. f2 − f1 + f0 − 5 ≥ 0.

vii. 2(f02 − 3f2) + f1 ≤
(

f0

2

)

.

viii. 2(f02 − 3f1) + f2 ≤
(

f2−f1+f0

2

)

.

ix. f02 − 4f2 + 3f1 − 2f0 ≤
(

f0

2

)

.
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x. f02 + f2 − 2f1 − 2f0 ≤
(

f2−f1+f0

2

)

.

The linear inequalities (i) and (v) are obvious; inequalities (ii) and (vi) are their
duals. Inequality (iii) is Kalai’s inequality (Theorem 3.8). The proofs of the
other inequalities are in Bayer [1987].

The projections of the inequalities of Theorem 3.10 onto f -vectors give all
the inequalities appearing in Theorem 3.9, and one other linear inequality. This
inequality was conjectured by Barnette [1972].

Theorem 3.11 If (f0, f1, f2, f3) is the f -vector of a 4-polytope, then

−3f2 + 7f1 − 10f0 + 10 ≥ 0.

In Bayer [1987] the tightness of the inequalities is analyzed.

3.9 Intersection Homology

In the early parts of this section we discussed how Stanley proved the McMullen
conditions using the interpretation of the h-vector as homology ranks for a toric
variety. The toric variety is defined for a rational polytope even if it is not
simplicial, but the singularities can be worse in this case. Different geometric
realizations of the same combinatorial type of simplicial polytope have toric
varieties with the same homology ranks. This is no longer the case for nonsim-
plicial polytopes. McConnell [1989] showed that the toric varieties associated
with two different (rational) geometric realizations of the rhombododecahedron
have different regular homology ranks.

The middle perversity intersection homology Betti numbers of a toric vari-
ety are, however, combinatorial invariants. A formula for these Betti numbers
in terms of the face lattice of the associated polytope was given independently
by Bernstein, Khovanskĭı and MacPherson (see Stanley [1987a]). Stanley gen-
eralized these Betti number formulas to Eulerian posets. He and several other
authors have applied them to the study of convex polytopes (Bayer-Klapper
[1991], Kalai [1988b], Stanley [1987a]). Here the coefficients hi are defined to
agree with the original h-vector in the simplicial case; hi represents the rank of
the (2d − 2i)th intersection homology group.

For any d-polytope P are defined a generalized h-vector (h0, h1, . . . , hd) ∈
d+1, with generating function h(P, t) =

∑d
i=0 hit

d−i, and g-vector

(g0, g1, . . . , gbd/2c) ∈ bd/2c+1, with generating function g(P, t) =
∑bd/2c

i=0 git
i,

related by g0 = h0 and gi = hi − hi−1 for 1 ≤ i ≤ bd/2c. The generalized
h-vector and g-vector are defined by the recursion

i. g( , t) = h( , t) = 1, and

ii. h(P, t) =
∑

G face of P
G6=P

g(G, t)(t − 1)d−1−dimG.
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We summarize the known results on generalized h-vectors in the following
theorem.

Theorem 3.12

i. The generalized h-vector of a rational polytope is the sequence of mid-
dle perversity intersection homology Betti numbers of the associated toric
variety.

ii. The generalized h-vector of a simplicial polytope is the same as its h-vector;
hence it satisfies the McMullen conditions.

iii. For any d-polytope, h0 = 1 and for all i, 0 ≤ i ≤ d, hi = hd−i.

iv. For any rational d-polytope and any i, 0 ≤ i ≤ d/2 − 1, hi ≤ hi+1.

v. There is a linear function from ed to d+1 that takes the flag vector of
any d-polytope to the generalized h-vector of the polytope.

Comments on the theorem. (i). Note that Stanley’s definition of the gener-
alized h-vector makes sense for all polytopes (or, more generally, for Eulerian
posets), but the toric variety is only defined for rational polytopes. (ii). For the
toric variety associated to a simplicial polytope, the middle perversity intersec-
tion homology is isomorphic to the ordinary homology. (iii). Stanley gives a
purely combinatorial proof of this duality result. Thus it applies even when the
toric variety is not defined. (iv). The proof of the unimodality of the generalized
h-vector depends on the existence of primitive homology groups for the toric va-
riety, hence on the rationality hypothesis. The first inequality holds trivially for
all polytopes; the second is Kalai’s Theorem 3.8. It is not known whether the
other inequalities hold for nonrational polytopes. (iii) and (v). According to
(v), (iii) gives approximately d/2 linear equations satisfied by the flag vectors of
all d-polytopes. Theorem 3.7, however, gives all such linear equations, of which
there are an exponential (in d) number. This suggests that the generalized h-
vector should be embedded in a larger set of parameters equivalent to the flag
vector. Kalai found one such set.

3.10 Kalai’s Convolutions

Kalai [1988b] creates new parameters by applying the g-vector transformation
simultaneously to different intervals of a polytope. First we give his extended
definition of the g-vector as a length d + 1 vector. Write Fd for the real vector
space with basis {fS : S ⊆ {0, 1, . . . , d − 1}}. An element of Fd (a “linear form”)
defines a real-valued function on the set of d-polytopes.
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For d ≥ 0 and 0 ≤ i ≤ d, define linear functions Gd
i on the set of d-polytopes

by the following recursion: Gd
0(P ) = 1 for all P and

Gd
i (P ) = (−1)i

(

d + 1

i

)

+

i−1
∑

j=0

i−j−1
∑

s=0

(−1)j

(

d − i + j − s + 1

j

)

∑

F a face of P
dimF = i − j + s − 1

Gi−j+s−1
s (F ).

The functions Gd
i have a natural representation as elements of Fd.

Kalai defines the convolution operation on the set F =
⋃

d≥0 Fd as follows:
for S ⊆ {0, 1, . . . , d − 1} and T ⊆ {0, 1, . . . , e−1}, let fS ∗fT = fS∪{d}∪T+(d+1),
where by T + (d + 1) is meant {t + d + 1 : t ∈ T}. Thus extending linearly, the
convolution of any linear forms is a linear form. Note that if P is a (d + e + 1)-
polytope, S ⊆ {0, 1, . . . , d − 1}, and T ⊆ {0, 1, . . . , e − 1}, then the convolution
of fS and fT is

fS ∗ fT (P ) =
∑

F face of P
dim F=d

fS(F )fT (P/F ).

Now consider the subset Md of Fd, Md = {Gd1

i1
∗ Gd2

i2
∗ · · · ∗ Gdk

ik
: k ≥ 1, 0 <

ij ≤ dj for 1 ≤ j ≤ k − 1, 0 ≤ ik ≤ dk, and k − 1 +
∑

dj = d}.

Theorem 3.13 (Kalai [1988b])

i. |Md| = 2d.

ii. Md is a basis for Fd.

iii. Every element of Md defines a nonnegative function on the set of rational
d-polytopes.

iv. Exactly 2d − ed of these functions are the zero function.

Thus Kalai’s convolutions extend the g-vector of a polytope to a vector
that completely encodes the flag vector and incorporates the generalized Dehn-
Sommerville equations. Note that among these are the equations Gd

i = 0 for
i > bd/2c, which are exactly the equations hi = hd−i.

The nonnegativity of the convolutions provides linear inequalities on the flag

numbers. For any d-polytope P and its dual P ∗, define G
d

i (P ) = Gd
i (P

∗). It

is easy to see that G
d

i can be represented by an element of Fd, and that it is
a nonnegative function on rational d-polytopes. Kalai suggests the following
conjecture.

Conjecture 3.14 Every linear inequality on the flag numbers of polytopes is
equivalent to the nonnegativity of some nonnegative linear combination of con-

volutions of the Gd
i and the G

d

i .
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3.11 Other Parameters

There are two other sets of parameters that extend the generalized h-vector of a
d-polytope. The first is to be found in Stanley [1987a], where he first introduced
the generalized h-vector. Let T ⊆ {0, 1, . . . , d − 1}, T = {0, 1, . . . , d − 1} \ T ,
and µT be the Möbius function of the restriction of (the face lattice of) P to
elements whose dimensions are not in T . The functions φT are certain linear
forms in the flag numbers.

Theorem 3.15 (Stanley [1987]) xd+1φT (P, 1/x) = φT (P, x).

When T = the theorem gives the equations hi = hd−i on the gener-
alized h-vector of a d-polytope. Presumably, as T ranges over all subsets of
{0, 1, . . . , d− 1}, the equations of the theorem are equivalent to the generalized
Dehn-Sommerville equations.

Another set of parameters comes not so directly from the h-vector. This is
the cd index of a polytope. It was introduced by Fine, and derives from the
extended h-vector of a polytope, mentioned in Section 3.7.

Suppose (fS(P ))S⊆{0,1,...,n−1} ∈ 2n

is the flag vector of a n-polytope P .

The extended h-vector of P is the vector (hS(P ))S⊆{0,1,...,n−1} ∈ 2n

given by

hS(P ) =
∑

T⊆S

(−1)|S\T |fT (P ).

This transformation is invertible:

fS(P ) =
∑

T⊆S

hT (P ).

The extended h-vector can be given by a generating function in the algebra of
polynomials in the noncommuting variables a and b. For S ⊆ {0, 1, . . . , n − 1},
write wi = a if i 6∈ S and wi = b if i ∈ S; let wS = w0w1 . . . wn−1. The
generating function for the extended h-vector is then h(P ) =

∑

hS(P )wS , the
sum being over all S ⊆ {0, 1, . . . , n−1}. Now it turns out that for every polytope
P , h(P ) is in the subalgebra generated by c = a + b and d = ab + ba. This fact
is essentially equivalent to the generalized Dehn-Sommerville equations. The
coefficients of the cd words in h(P ) form a vector of length en; this is called the
cd index of P .

The cd index can be computed recursively via a shelling of the polytope.
Like the flag vector and the extended h-vector, the cd indices of a polytope and
its dual have a simple relationship: the cd index of P ∗ is obtained by reversing
every cd word in the cd index of P . Fine conjectured that the coefficients of the
cd index of any polytope are nonnegative. This was proved for quasisimplicial
polytopes and their duals by Purtill [1991]. In Bayer-Klapper [1991] equations
relating the cd index with the generalized h-vector are computed. They are used
to give another proof of a result on the g-vectors of dual polytopes. This result
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was originally proved by Kalai, directly from the definition of the generalized
h-vector.

Theorem 3.16 Suppose n is even and let P and P ∗ be a pair of dual n-
polytopes. Then gn/2(P ) = gn/2(P

∗).

3.12 Algebraic Shifting

In his characterization of f -vectors of nerves of convex sets, Kalai [1984] consid-
ered an algebraic structure analogous to the Stanley-Reisner ring of a simplicial
complex and defined the notion of algebraic shifting, which we briefly describe.

Let ∆ be a simplicial complex with vertices v1, v2, . . . , vn, and let V be an
n-dimensional vector space over a field k. Choose a basis {e1, e2, . . . , en} of
V . Form the exterior algebra

∧

V over V . Construct the ideal I∆ spanned
by {ei1 ∧ ei2 ∧ · · · ∧ eis : {vi1 , vi2 , . . . , vis} 6∈ ∆}. Form the quotient algebra
∧

(∆) =
∧

V/I∆. From another basis of V that is “generic” with respect to the
first, another simplicial complex ∆′ can be obtained that has the same f -vector
as ∆ but is “shifted” with respect to an appropriate partial order on subsets of
{v1, v2, . . . , vn}.

Studying
∧

(∆) has led to an impressive array of other results, including
a simpler proof of the Upper Bound Theorem (Alon-Kalai [1985]) and a com-
plete characterization of (f -vector, Betti sequence) pairs for simplicial complexes
(Björner-Kalai [1988]).

3.13 Rigidity and Stress

Let v1, v2, . . . , vn be the vertices of a d-polytope P ⊂ d. An infinitesimal
motion of the vertices is a set of vectors u1, u2, . . . , un such that d(‖(vi + tui)−
(vj + tuj)‖

2)/dt = 0 when t = 0 for all edges vivj . Equivalently, 〈(vi − vj), (ui −
uj)〉 = 0 for all edges. Dehn [1916] proves that there are no infinitesimal motions
for convex simplicial 3-polytopes apart from the rigid motions, and this extends
to arbitrary d ≥ 3 (see Whiteley [1984]).

Theorem 3.17 For d ≥ 3, simplicial convex d-polytopes are infinitesimally
rigid.

Given d-polytope P with vertex set V and edge set E, a stress is an assign-
ment of numbers λuv to its edges uv ∈ E such that the following equilibrium
conditions hold:

∑

{u∈V :vu∈E}

λvu(v − u) = o for all v ∈ V .

The set of stresses forms a vector space, called the stress space.
Dehn’s Theorem is equivalent to the following.

27



Theorem 3.18 Let P be a simplicial convex d-polytope, d ≥ 3. Then the di-
mension of the stress space equals f1 − df0 +

(

d+1
2

)

. In particular, if d = 3 there
are no nontrivial stresses.

Note that the above dimension equals h2−h1. Kalai [1987] observes that the
nonnegativity of this quantity immediately yields another proof of the Lower
Bound Theorem for simplicial polytopes, and he also extends the theorem to
nonsimplicial polytopes (Theorem 3.8) and larger classes of complexes. See the
chapter Rigidity by Connelly in this volume for more background on stress and
rigidity in convexity.

Kalai’s observation provides a new proof of the nonnegativity of h2 − h1 for
simplicial d-polytopes, d ≥ 3. On the other hand, the connection between the
Stanley-Reisner ring and toric varieties proves hi − hi−1 ≥ 0 for all i, 1 ≤ i ≤
bd/2c. This foreshadowed a stronger connection between the Stanley-Reisner
ring and stresses (Lee [1990, 1991a]).

Let R∆ = R1 ⊕ R2 ⊕ · · · be the Stanley-Reisner ring of any simpli-
cial (d − 1)-complex ∆ with n vertices. For θ1, θ2, . . . , θd ∈ R1 define
B = R∆/(θ1, θ2, . . . , θd) and give B the grading induced by R∆. Then R∆

is Cohen-Macaulay if and only if there exist θ1, θ2, . . . , θd ∈ R1 such that
B = B0 ⊕ B1 ⊕ · · · ⊕ Bd, where hi = dim Bi for all i, 0 ≤ i ≤ d. Regard-
ing multiplication by θi as a linear map in R∆ and dualizing, this condition can
be reformulated.

Given θi =
∑n

j=1 ajixj for all i, 1 ≤ i ≤ d, define vj ∈ d for all j, 1 ≤ j ≤ n
by vj = (aj1, aj2, . . . , ajd). For monomial m = xr1

1 xr2
2 · · ·xrn

n , define supp(m) =
{xi : ri 6= 0}. For all i, 0 ≤ i ≤ d, let Mi be the set of monomials of degree
i. Then for all i, 1 ≤ i ≤ d, a linear i-stress on ∆ (with respect to v1, . . . , vn)
is a homogeneous polynomial b =

∑

m∈Mi
bmm such that the following two

conditions hold:

i. bm = 0 if supp(m) 6∈ ∆.

ii.
∑n

j=1 bmxjvj = o for every m ∈ Mi−1.

An affine i-stress is defined in exactly the same way, with the additional con-
dition that

∑n
j=1 bmxj = 0 for every m ∈ Mi−1. (This condition corresponds to

the conjecture that ω = x1 + x2 + · · ·+ xn is a hyperplane section.) A linear or
affine 0-stress is defined to be any real number.

Let Li (Ai) be the vector space of all linear (affine) i-stresses. In particular,
L1 (A1) is the set of all linear (affine) relations on the points vj .

Theorem 3.19 (Lee [1990])

i. For simplicial (d − 1)-complex ∆, R∆ is Cohen-Macaulay if and only if
there exist v1, v2, . . . , vn such that dim Li = hi for all i, 0 ≤ i ≤ d.

ii. Suppose ∆ is a simplicial (d − 1)-sphere. If dim Ai = hi − hi−1 for all i,
1 ≤ i ≤ bd/2c, then h = (h0, h1, . . . , hd) satisfies the McMullen conditions.
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Condition (i) can be used for another proof that shellable simplicial com-
plexes are Cohen-Macaulay. Using the fact that all simplicial p.l.-spheres can be
obtained from the boundary of a simplex by a sequence of bistellar operations
(see Section 4.3), (i) leads to a more elementary proof that simplicial p.l.-spheres
are Cohen-Macaulay.

In the case that ∆ is the boundary complex of a simplicial d-polytope P ⊂ d

containing o in its interior, the vectors vj can be taken to be the actual vertices
of P . Then A2 is easily seen to be isomorphic to the classical stress space, and
it can be shown that (i) holds.

The polar of P sheds light on some very interesting relationships among
stress, Dehn’s Theorem, Minkowski’s Theorem, the Brunn-Minkowski Theorem,
the Hard Lefschetz Theorem, the McMullen conditions, mixed volumes, and the
Alexandrov-Fenchel inequalities. See Filliman [1992] and Lee [1991a].

4 Gale Transforms and Diagrams

4.1 Introduction

Given d-polytope P ⊂ d with vertices v1, v2, . . . , vn, list these vectors as
columns of a matrix and append a row of ones to obtain the (d + 1)× n matrix
A. Consider the nullspace of A, the space of all affine relations (λ1, λ2, . . . , λn)
on the set of vertices; i.e.,

∑n
i=1 λivi = o and

∑n
i=1 λi = 0. Let A be an

(n − d − 1) × n matrix whose rows form a basis for this space, and denote
its columns by v1, v2, . . . , vn. This collection V of points in n−d−1 is a Gale
transform of V . The natural correspondence between vertices vi and transform
points vi extends to a correspondence between subsets of V and subsets of V .
The key property of Gale transforms is the following.

Theorem 4.1 Let X be a proper subset of V . Then conv(X) is a face of P if
and only if o ∈ relint(conv(V \ X)).

A collection W = {w1, w2, . . . , wn} is a Gale diagram of V if it satisfies
the property given in the above theorem. For example, Gale diagrams can be
obtained by scaling the points in a Gale transform independently by positive
amounts.

Gale transforms and diagrams are recognized for their usefulness in estab-
lishing results when n is not much larger than d, but even in the general case
they are helpful tools. Both Grünbaum [1967] and McMullen-Shephard [1971]
contain good introductions. For a more extensive survey of results than is pre-
sented here, refer to McMullen [1979]. Note that the toric variety discussed in
Section 3.3 is the result of an algebraic analogue of the Gale transform.

Suppose one is given V = {v1, v2, . . . , vn} ⊂ d such that o ∈ int(conv(V )),
and a spherical simplicial (d− 1)-complex ∆ on these n points. The next result
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characterizes when ∆ can be realized convexly by positively scaling the points
of V .

Theorem 4.2 (Shephard [1971])
There exist positive numbers λ1, λ2, . . . , λn such that ∆ is isomorphic to the
boundary complex of conv({λ1v1, λ2v2, . . . , λnvn}) if and only if

⋂

relint(conv(V \ F )) 6= ,

where V is a Gale transform of V and the intersection is taken over all facets
F of ∆.

A direct translation of a theorem of Bárány via Gale transforms yields the
following theorem; see Bigdeli [1991].

Theorem 4.3 Given V = {v1, v2, . . . , vn} ⊂ d in linearly general position
such that o ∈ int(conv(V )). Let m(V ) be the maximum number of facets of a
polytope obtained by scaling the points in V independently by positive amounts.

Then m(V ) ≥ 1
kk

(n
k
)

+ O(nk−1), where k = n − d.

Another illustration of the usefulness of affine relations in the structure of
polytopes is the indecomposability characterization of Smilansky [1987].

4.2 Polytopes with Few Vertices

A d-polytope P with n vertices has a Gale transform of dimension n − d − 1,
and Sturmfels [1988] uses affine transforms to further reduce the dimension by
one. Gale transforms have gained the (perhaps undeserved reputation) of being
useful only when P has few vertices, i.e., when n ≤ d + 3. In this case the
Gale transform is at most two dimensional and is easier to analyze. This feeling
is supported by the fact that there are many results that are easier to prove
for polytopes with few vertices, and that quite often these results fail when
n = d + 4. Here is a small sample.

Theorem 4.4 Every (d−1)-dimensional p.l.-sphere with at most d+3 vertices
is polytopal. However, there exists a simplicial 3-sphere with 8 vertices that is
not polytopal.

The first part of the theorem is due to Mani [1972] for simplicial spheres
and Kleinschmidt [1976b] for nonsimplicial spheres. The nonpolytopal sphere is
discussed in Grünbaum [1967] and is due to Brückner, (who, however, thought
it was polytopal). Kleinschmidt [1977] proves an analogue of the above theorem
for (d−1)-spheres with at most 2d vertices possessing combinatorial involutions
with no fixed points.

The following theorem is stated in Grünbaum [1967].
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Theorem 4.5 (Perles) For every d-polytope with at most d + 3 vertices there
exists a combinatorially equivalent d-polytope P such that every automorphism
of the boundary complex of P is induced by a geometric symmetry of P .

Theorem 4.6 For every d-polytope with at most d + 3 vertices and ε > 0 there
exists a combinatorially equivalent polytope with rational vertices such that each
vertex is a distance at most ε from the corresponding vertex of P . However,
there exists a 6-polytope that is combinatorially equivalent to no polytope with
rational vertices.

The first part of the above theorem is due to Perles and stated in Grünbaum
[1967], in which also a nonrational 8-polytope with 12 vertices discovered by
Perles is described. Sturmfels [1987a] constructs lower dimensional examples
(see Section 6.5).

One says that a facet F of a polytope P can be preassigned if, given any poly-
tope F ′ combinatorially equivalent to F , there is a polytope P ′ combinatorially
equivalent to P having F ′ as a facet corresponding to F .

Theorem 4.7 (Kleinschmidt [1976a]) If a d-polytope has at most d+3 ver-
tices, then the shape of each of its facets can be preassigned. However, there
exists a 4-polytope with 8 vertices such that the shape of one of its facets cannot
be preassigned.

Gale transforms can be used to count the number of different combinatorial
types of polytopes with few vertices.

Theorem 4.8 There are bd2/4c different combinatorial types of d-polytopes
with d + 2 vertices. There are bd/2c different combinatorial types of simpli-
cial d-polytopes with d + 2 vertices.

Perles (see Grünbaum [1967]) and Lloyd [1970] count the number of simpli-
cial and general d-polytopes with d + 3 vertices, respectively.

4.3 Subdivisions and Triangulations

Given a d-polytope P with vertex set V , a subdivision of P is a collection ∆
of d-polytopes such that (1) for every Q1, Q2 ∈ ∆, Q1 ∩ Q2 is a common face
(possibly empty) of both Q1 and Q2; (2) P is the union of the polytopes in ∆;
and (3) for every Q ∈ ∆, the vertex set of Q is a subset of V . A subdivision ∆
is a triangulation provided every member of ∆ is a d-simplex.

The Dehn-Sommerville equations force relations among the h-vectors of a
triangulation ∆, of the collection of its boundary faces ∂∆, and of the collection
of its interior faces ∆o, which also hold for general simplicial balls.

Theorem 4.9 (McMullen-Walkup [1971]) Suppose ∆ is a simplicial d-ball.
Then
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i. hi(∆) − hd−i+1(∆) = hi(∂∆) − hi−1(∂∆) for all i, 1 ≤ i ≤ d.

ii. hi(∆) = hd−i+1(∆
o) for all i, 0 ≤ i ≤ d + 1.

A simple corollary is mentioned in Lee [1991b].

Corollary 4.10 Suppose ∆ is a simplicial d-ball. Then fd(∆) ≥ hbd/2c(∂∆).

There is a wide range of results on subdivisions and triangulations; we men-
tion only a few that relate to Gale transforms.

Theorem 4.11 (McMullen [1979]) Let P be a d-polytope with vertex set
V = {v1, v2, . . . , vn}, let V ⊂ n−d−1 be a Gale transform of V , and let
z ∈ n−d−1. Consider the collection ∆ of d-polytopes conv(S) such that S ⊆ V
and o ∈ relint(conv((V ∪ {z}) \ S)). Then ∆ is a subdivision of P .

Subdivisions and triangulations of the above form are called regular . An
equivalent way to generate regular subdivisions of a d-polytope P ⊂ d with
vertex set {v1, v2, . . . , vn} is to choose real numbers λ1, λ2, . . . , λn and form the
convex hull Q of {(v1, λ1), (v2, λ2), . . . , (vn, λn)}. Projecting the facets in the
upper hull of Q into ( d, 0) yields a regular subdivision of P .

We need some definitions. The link of a face F in a simplicial complex ∆
is the set of faces G of ∆ such that F ∩ G = and F ∪ G is a face of ∆. The
stellar subdivision of F in ∆ is obtained by removing F from ∆ and adding a
new vertex v along with all simplices formed from v, a proper subface of F , and
a face in the link of F . A bistellar operation on a simplicial sphere is a certain
combination of a stellar subdivision and inverse stellar subdivision at the same
site. The following is then a consequence of a line shelling of the upper hull of
Q.

Theorem 4.12 (Ewald [1978]) The boundary complex of any simplicial d-
polytope can be obtained from that of a d-simplex by a sequence of bistellar
operations, such that at each intermediate stage the simplicial complex is poly-
topal.

Pachner [1990] proves that a simplicial complex is a p.l.-sphere if and only if it
is obtainable from the boundary complex of a simplex by a sequence of bistellar
operations. In fact, Pachner shows that simplicial p.l.-spheres are precisely
boundaries of shellable balls. However, the undecidability result mentioned in
Section 2.10 implies that for simplicial p.l.-spheres, unlike for polytopes, no
upper bound on the number of such operations needed can be computed from
the given simplicial complex. On the other hand, properties of the h-vector
imply that if Σ is a (d − 1)-dimensional simplicial p.l.-sphere, then at least
hbd/2c(Σ) bistellar operations are necessary, generalizing Corollary 4.10.

Let P be a d-polytope, F be a facet of P with supporting hyperplane H , and
x be a point in d. Then x is beyond F if x and the interior of P lie in opposite
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open halfspaces determined by H , and beneath F if x and the interior of P lie
in the same open halfspace determined by H . Now suppose that x lies beyond
precisely one facet F of P and beneath all the others. Let C denote the boundary
complex of P excluding F . Projecting C onto H centrally through x results in
a polyhedral (d − 1)-complex isomorphic to C, called a Schlegel diagram of P .
See Grünbaum [1967]. Gale transforms provide a characterization of Schlegel
diagrams.

Theorem 4.13 (Sturmfels [1986]) Let ∆ be a subdivision of a convex (d−1)-
polytope P , this time allowing the vertex set V of ∆ to be a strict superset of
the vertex set W of P , but on the other hand requiring that proper faces of P
be faces of ∆. Then ∆ is the Schlegel diagram of some d-polytope if and only if

(
⋂

relint(pos(V \ F ))) ∩ (−relint(pos(V \ W ))) 6= ,

where V is a Gale transform of V and the first intersection is taken over all
(d − 1)-polytopes F of ∆.

Not all subdivisions ∆ of a (d − 1)-polytope P satisfying the conditions in
the first sentence of the theorem are Schlegel diagrams, even when P is two
dimensional. However, if P is two dimensional, then ∆ is isomorphic to the
Schlegel diagram of some 3-polytope (Grünbaum [1967]).

For polytopes with few vertices all subdivisions are regular, but this is not
true in general.

Theorem 4.14 (Lee [1991b]) If P is a d-polytope with at most d+3 vertices,
then every subdivision of P is regular. However, there exist 3-polytopes with 7
vertices that possess nonregular triangulations.

On the other hand, the collection of all regular subdivisions of a given poly-
tope has a nice structure, discovered by Gel’fand, Kapranov, and Zelevinskĭı in
connection with their work on generalized discriminants and determinants.

Theorem 4.15 (Gel’fand, Kapranov, Zelevinskĭı [1989]) The collection
of all regular subdivisions of a given d-polytope P with n vertices, partially or-
dered by refinement, is combinatorially equivalent to the boundary complex of
some (n − d − 1)-polytope Q.

This polytope Q is called the secondary polytope of P , and can be constructed
as follows. Let {v1, v2, . . . , vn} be the set of vertices of P , and for any trian-
gulation ∆ of P (whether regular or not) define z(∆) = (z1, z2, . . . , zn) ∈ n

by zi =
∑

vol(F ), where the sum is taken over all d-simplices F containing vi.
Then Q = conv({z(∆) : ∆ is a triangulation of P}). In particular, the vertices
of Q correspond to the regular triangulations of P . Alternate constructions are
described in Billera-Filliman-Sturmfels [1990]. For example, Q can be expressed

33



as a discrete or continuous Minkowski sum of polars of polytopes corresponding
to various translates of a Gale transform of P . Generalizations of the secondary
polytope appear in Billera-Sturmfels [1990].

In Section 3.4 we learned that the h-vector of a simplicial d-polytope P satis-
fies hk ≥ hk−1 for all k, 1 ≤ k ≤ bd/2c. From the Lower Bound Theorem (2.11)
we also know that h2 = h1 if and only if P is stacked. In general, P is called
k-stacked if P has a triangulation such that there is no interior face of dimension
less than d − k. The McMullen conditions and Theorem 4.9 imply that if P is
k-stacked, then hk = hk−1. McMullen and Walkup conjectured the converse as
part of their Generalized Lower-Bound Conjecture.

Conjecture 4.16 (McMullen-Walkup [1971]) Let P be a simplicial d-
polytope. For all k, 1 ≤ k ≤ bd/2c, hk = hk−1 if and only if P is (k−1)-stacked.

The following is a consequence of the construction in Billera-Lee [1981b].

Theorem 4.17 (Kleinschmidt-Lee [1984]) Let P be a simplicial d-polytope
such that hk = hk−1 for some k, 1 ≤ k ≤ bd/2c. Then there exists a k-stacked
simplicial d-polytope Q with the same h-vector as P .

A few cases of the conjecture have been resolved by interpreting the differ-
ences hk − hk−1 as winding numbers in Gale transforms, but as a whole the
conjecture remains unresolved.

Theorem 4.18 (Lee [1991c]) The above conjecture holds if f0 ≤ d + 3 or if
k < f0/(f0 − d).

Suppose P is a d-polytope. Some particular regular triangulations of P ,
called pulling triangulations, can be obtained by first ordering the vertex set
of P , V = {v1, v2, . . . , vn}. For every j-face F of P let v(F ) denote the
vertex of smallest index that is in F . A full flag of P is a chain of faces
F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd = P such that dim Fj = j for all j, 0 ≤ j ≤ d,
and v(Fj) 6∈ Fj−1 for all j, 1 ≤ j ≤ d. Associate with each full flag the simplex
conv({v(F0), v(F1), . . . , v(Fd)}). Then these simplices are all d-dimensional and
together determine a triangulation of P . This idea appears in Hudson [1969] in
a more general context and has been frequently rediscovered in various guises.

Write J(P, t) = 1 +
∑∞

n=1 i(P, n)tn, where i(P, n) denotes the number of
points x ∈ P such that nx ∈ d. Stanley uses pulling triangulations to prove
the following, which strengthens earlier work of Ehrhart and McMullen.

Theorem 4.19 (Stanley [1980a]) Suppose every vertex of P is integral.
Then J(P, t) = W (P, t)/(1 − t)d+1 where W (P, t) is a polynomial of degree
at most d with nonnegative integer coefficients.
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For integral d-polytope P , call an ordering σ of its vertices compressed if
every d-simplex in the associated pulling triangulation has volume 1/d!. P
itself is compressed if every ordering σ is compressed. For example, the unit
d-cube is compressed.

Theorem 4.20 (Stanley [1980a]) If P is an integral d-polytope with com-
pressed ordering σ, then

i(P, n) =

d
∑

i=0

(

n − 1

i

)

fi(∆),

and W (P, t) = h0(∆) + h1(∆)t + · · ·+ hd(∆)td, where ∆ is the pulling triangu-
lation induced by σ.

(Compare the above with Equation (5) of Section 3.2.)

Corollary 4.21 (Stanley [1980a]) If P is a compressed integral d-polytope
and σ is an ordering, then the f -vector of the triangulation induced by σ depends
only on P , not on σ.

The Cartesian product T m × T n of two simplices of any dimension is com-
pressed, but unlike the d-cube has the property that all of its triangulations have
the same f -vector, whether induced by an ordering as above or not; see Billera-
Cushman-Sanders [1988]. Any polytope with this property is called equidecom-
posable. A weakly neighborly polytope is one for which every set of k+1 vertices
is contained in a face of dimension at most 2k. T m × T n is also weakly neigh-
borly. The following results are drawn from Bayer [1990] and Stanley [1991].

Theorem 4.22

i. If P is a rational d-polytope and ∆ is any subdivision of P , then h(∆) ≥
h(P ), where h is the generalized h-vector, and P is regarded as a d-
complex.

ii. If P is a weakly neighborly d-polytope, then P is equidecomposable, and
h(∆) = h(P ) for any triangulation ∆ of P .

iii. If P is a rational weakly neighborly d-polytope and ∆ is any subdivision of
P , then h(∆) = h(P ).

iv. If P is a rational d-polytope and h(∆) = h(P ) for all triangulations of P ,
then P is weakly neighborly.

Bayer [1990] uses Gale transforms to characterize equidecomposable and
weakly neighborly d-polytopes with at most d + 3 vertices. All 2-polytopes are
weakly neighborly. A 3-polytope is weakly neighborly iff it is a prism over a tri-
angle or a pyramid over a polygon. A simplicial polytope is weakly neighborly
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iff it is a simplex or an even dimensional neighborly polytope. Other classes
of weakly neighborly polytopes include pyramids over weakly neighborly poly-
topes, subpolytopes of weakly neighborly polytopes, and Lawrence polytopes
(Section 4.5).

4.4 Oriented Matroids

Matroids and oriented matroids provide a setting for a combinatorial abstraction
of convexity, including analogues of Carathéodory’s theorem, Radon’s theorem,
Helly’s theorem, and the Hahn-Banach theorem; generalizations of point and
hyperplane arrangements, convex polytopes, and Gale transforms; as well as
a combinatorial derivation of linear programming. See the chapter Oriented
Matroids by Bokowski in this volume or Björner-Las Vergnas-Sturmfels-White-
Ziegler [1991] for details. Sturmfels [1986] discusses the relationship between
oriented matroids and Gale transforms.

A matroid M is a pair (E, C) consisting of a finite set E and a collection
of nonempty incomparable subsets C of E (called the circuits of M) satisfying
the following property: C1, C2 ∈ C, e ∈ C1 ∩ C2, and e′ ∈ C1 \ C2 implies the
existence of C3 ∈ C such that e′ ∈ C3 ⊆ (C1 ∪ C2) \ {e}. For example, the
collection of supports of elementary vectors in a subspace V of n forms the
circuits of a matroid on E = {1, 2, . . . , n}. Given matroid (E, C), let C∗ be the
collection of all minimal nonempty subsets C∗ of E such that |C∗ ∩ C| 6= 1 for
all C ∈ C. Then M∗ = (E, C∗) is also a matroid, called the dual of M , and
members of C∗ are called the cocircuits of M . In the preceding example, C∗ is
the collection of supports of elementary vectors in V ⊥. When a matroid can be
derived from a subspace of n, it is called representable (over ). So matroids
provide a generalization of unsigned patterns of dependences of finite collections
of vectors.

Oriented matroids, on the other hand generalize signed patterns of depen-
dences. Let E be a finite set. A signed set X is an ordered pair (X+, X−) of
disjoint subsets of E. The set X = X+ ∪ X− is called the underlying set of X ,
and by −X is meant (X−, X+). Two signed sets X, Y are said to be orthogonal
if either their underlying sets are disjoint or else both (X+∩Y +)∪(X−∩Y −) 6=
and (X+ ∩ Y −) ∪ (X− ∩ Y +) 6= . Let O,O∗ be two collections of signed sets
in E. Then M = (E,O) and M∗ = (E,O∗) is a dual pair of oriented matroids
provided the following conditions hold:

i. The underlying sets of the members of O (respectively, O∗) form the cir-
cuits (respectively, cocircuits) of a matroid (called the underlying matroid
M).

ii. X ∈ O (respectively, O∗) implies −X ∈ O (respectively, O∗).

iii. If X, Y ∈ O (respectively, O∗) and X = Y , then Y = ±X .

iv. If X ∈ O and Y ∈ O∗, then X and Y are orthogonal.
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As in the unoriented case, members of O are referred to as the circuits of M
and members of O∗ as the cocircuits.

So, for example, the signed supports of elementary vectors in a pair V, V ⊥

of dual subspaces of n form the circuits and cocircuits of an oriented matroid
on {1, 2, . . . , n}. This is true in particular for the null spaces of A and A used
in Section 4.1 to define the Gale transform of a polytope, and suggests the
following definition.

Let O∗ be the set of cocircuits of an oriented matroid M on E. A cocircuit
X is positive if X− = , and M is acyclic if it has positive cocircuits. The
facets of M are the sets of the form E \ C where C is a positive cocircuit of
E. The faces of M are the intersections of finite numbers of facets of M . The
collection of faces of M , ordered by inclusion, forms a lattice, called the (Las
Vergnas) face lattice of M . Vertices of the lattice are faces of M that have rank
one in the underlying matroid M , and M is a matroid polytope provided all
one-element subsets of E are vertices. In the case that M is derived from a dual
pair of subspaces of n, M is called representable (over ) and the face lattice
of M is isomorphic to the face lattice of a convex polytope.

Oriented matroids can alternately be defined by assigning sign patterns to
ordered bases of a matroid (maximal subsets of E containing no circuit) which
would not be inconsistent with the Plücker-Graßman relations should the ori-
ented matroid be representable. All bases have the same cardinality, called the
rank of the matroid. Much of the usefulness of oriented matroids in the theory
of convex polytopes is related to realizability results, some of which are also
discussed in Section 6.5. Bokowski and Sturmfels [1987] developed algorithms
based upon oriented matroids to test polytopality of spheres, which, combined
with other results, has led to a complete classification of simplicial neighborly
3-spheres with 10 vertices into polytopal and nonpolytopal spheres.

We mention a few other results that are obtainable by matroid tech-
niques. All of them are quoted from Björner-Las Vergnas-Sturmfels-White-
Ziegler [1991].

Theorem 4.23 (Las Vergnas [1986]) For d ≥ 2 there exists a set of (d +
1)(d + 2)/2 points in general position in d which is not projectively equivalent
to the set of vertices of any d-polytope.

The next theorem can be found in Cordovil-Duchet [1987].

Theorem 4.24 (Duchet-Roudneff) Let n, d be integers with n ≥ d + 1 ≥
3. There exists an integer N = N(n, d) such that every set of N points in
general position in affine d-space contains the n vertices of a cyclic d-polytope.
Moreover, cyclic polytopes are the only combinatorial types of polytopes with this
property.

Theorem 4.25 (Sturmfels [1987b]) Suppose the
convex hull of {v1, v2, . . . , vn} in d is combinatorially equivalent to C(n, d).
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Then there exists a curve C containing v1, v2, . . . , vn such that every hyperplane
in d meets C in at most d points.

Theorem 4.26 (Grünbaum [1967])

i. Let M be a neighborly rank 2k+1 matroid polytope with n ≤ 2k+3. Then
M is isomorphic to C(n, 2k + 1).

ii. For all k ≥ 2 there is a representable neighborly rank 2k + 1 matroid
polytope with 2k + 4 vertices which is not isomorphic to a cyclic polytope.

A matroid polytope M is called rigid if M is determined by its face lattice.

Theorem 4.27 (Shemer [1982]) Every neighborly rank 2k + 1 matroid poly-
tope is rigid.

Theorem 4.28 (Bokowski-Sturmfels [1987]) There exists a triangulated 3-
sphere (the Barnette sphere) with 8 vertices which is not the face lattice of any
matroid polytope.

Theorem 4.29 For all d ≥ 4 and n ≥ d + 5 there exists a rank d + 1 matroid
polytope whose face lattice is a nonpolytopal simplicial (d − 1)-sphere with n
vertices.

4.5 Lawrence Polytopes

Bayer-Sturmfels [1990] is a good reference for the Lawrence construction, which
provides an effective method for lifting matroid representability results into
polytope realizability results. See also Björner-Las Vergnas-Sturmfels-White-
Ziegler [1991]. A polytope is called a Lawrence polytope if it has a centrally
symmetric Gale transform. Let {v1, v2, . . . , vn} be a Gale transform of convex
d-polytope P with n vertices. Let Λ(P ) be a polytope whose Gale transform is
{v1, v2, . . . , vn,−v1,−v2, . . . ,−vn}. Then Λ(P ) is a Lawrence (d + n)-polytope
with 2n vertices which contains P as a quotient polytope. Hence every polytope
is the quotient of a Lawrence polytope.

This construction can be extended in a natural way to oriented matroids M ,
so that if M is a rank r oriented matroid on n elements, then Λ(M) is a rank n+r
oriented matroid on 2n elements. It turns out that the combinatorial structure
of the face lattice of Λ(M) depends strongly upon the matroid structure of M .

Theorem 4.30 (Bokowski-Sturmfels [1987]) Every
Lawrence matroid polytope Λ(M) is rigid. I.e., Λ(M) is uniquely determined
by its face lattice.
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Theorem 4.31 (Bayer-Sturmfels [1990]) For any oriented matroid M , the
f -vector and the flag vector of the Lawrence polytope Λ(M) are functions of
the underlying matroid M . In the generic case where M is a uniform oriented
matroid of rank r on n points, the f -vector and the flag vector can be expressed
as functions depending only on n and r.

Theorem 4.32 (Billera-Munson [1984])

i. The face lattice of Λ(M) is polytopal if and only if M is representable.

ii. There exists a rank 12 matroid polytope with 16 vertices whose face lattice
is not polytopal.

iii. There exists a rank 12 matroid polytope M with 16 vertices which does
not have a polar; i.e., there is no matroid polytope having a face lattice
anti-isomorphic to the face lattice of M .

Although oriented matroids capture and generalize the combinatorial flavor
of convex polytopes very well, it is curious that the existence of polars does not
generalize. Other realization problems will be mentioned in Section 6.5.

Theorem 4.33 (Bayer-Sturmfels [1990])

i. The convex realization space of the face lattice of Λ(M) is homotopy equiv-
alent to the realization space of M .

ii. There exist two combinatorially equivalent Lawrence 19-polytopes P and
Q that are not isotopy equivalent.

We will return to the isotopy problem in Section 6.4.

5 Graphs of Polytopes

5.1 Introduction

In this section we mention only briefly the major results on the graphs of
polytopes. The general subject is covered in Grünbaum [1975], and Klee-
Kleinschmidt [1987] is an extensive survey of the d-step conjecture. See also
Klee-Kleinschmidt [1991].

5.2 Steinitz’s Theorem

The graph of a polytope is the set of vertices and edges of the polytope. The
earliest major result on the graphs of polytopes was Steinitz’s Theorem on the
graphs of 3-polytopes. Recall that a graph is d-connected if every pair of vertices
is connected by d internally disjoint paths or, equivalently, the removal of any
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d − 1 vertices leaves a connected graph with at least two vertices. A graph is
planar if it can be represented in 2 by a set of distinct points (for the vertices)
and a set of curves (for the edges) which intersect only at common vertices.

Theorem 5.1 (Steinitz [1922]) A graph G is the graph of a 3-polytope P if
and only if it is planar and 3-connected.

See also Steinitz-Rademacher [1934] and Grünbaum [1967].
Mani [1971] showed that P can be chosen so that the isometries of P corre-

spond to the automorphisms of the graph. Steinitz’s Theorem has many other
consequences on the realizability of 2-dimensional complexes (see Section 6.5).

The connectivity condition can be extended to polytopes of arbitrary dimen-
sion.

Theorem 5.2 (Balinski [1961]) The graph of every d-polytope is d-
connected.

Another connectivity criterion is due to Klee (see Grünbaum [1967]). For
a polytope P with at least n + 1 vertices, define sn(P ) to be the maximum
number of connected components that can remain when n vertices are removed
from the graph of P , and s(n, d) = max{sn(P ) : P is a d-polytope}.

Theorem 5.3 (Klee [1964]) For all n and d,

s(n, d) =







1, if n ≤ d − 1,
2, if n = d,
fd−1(C(n, d)), if n ≥ d + 1.

Klee then used the above result to show that for every d there is a graph of a
d-polytope that cannot be the graph of an e-polytope for any e 6= d. Moreover,
such dimensionally unambiguous graphs can have arbitrarily large numbers of
vertices.

The k-skeleton of a d-polytope is the polyhedral complex generated by the
k-faces of the polytope. Thus the 1-skeleton is the graph of the polytope.
The following result, originally observed for graphs, was proved in general by
Grünbaum.

Theorem 5.4 (Grünbaum [1965]) The k-skeleton of a d-polytope (1 ≤ k ≤
d − 1) contains a subdivision of the k-skeleton of the d-simplex.

When does the graph of a polytope determine the entire combinatorial struc-
ture of the polytope? Steinitz’s Theorem implies that it does when the polytope
is 3-dimensional. In general this is not the case, however. For example all neigh-
borly polytopes with the same number of vertices have the same graph, namely,
the complete graph. (For neighborly polytopes, see Grünbaum [1967].) Recall
that Theorem 2.9 of Section 2.6 shows that the graph of a simple polytope
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uniquely determines its face lattice. The same is true for zonotopes (Minkowski
sums of finite collections of line segments) (Björner-Edelman-Ziegler [1990]).
These cases are quite special. In general, one cannot reconstruct a d-polytope
even from its (d−3)-skeleton. The (d−2)-skeleton does, however, determine the
combinatorial type of any d-polytope, and the same is true for the bd/2c-skeleton
of a simplicial d-polytope. See Grünbaum [1967] and Perles [1970].

5.3 Hamiltonian Circuits

An important issue in graph theory is the existence of Hamiltonian circuits
(closed paths containing all vertices), which began with Hamilton’s observa-
tions about circuits on the dodecahedron. It is natural, therefore, to ask whether
graphs of polytopes have Hamiltonian circuits. Already in the last century Kirk-
man knew of polytopes without Hamiltonian circuits. Tutte [1946] found the
first example of a simple polytope without a Hamiltonian circuit. His example
is a 3-polytope; it is still open whether all simple polytopes of dimension higher
than three have Hamiltonian circuits. The following classes of 3-polytopes are
known, however, to have Hamiltonian circuits: those with 4-connected graphs;
simple 3-polytopes with at most 36 vertices; simple 3-polytopes with at most two
types of 2-faces: 3-gons, 4-gons or 6-gons; and simplicial 3-polytopes with max-
imum vertex degree six. See Grünbaum [1967] and Klee-Kleinschmidt [1991].
A Hamiltonian path in a graph is a spanning tree with maximum degree two.
Thus, the following theorem is related in a natural way.

Theorem 5.5 (Barnette [1966]) The graph of every 3-polytope has a span-
ning tree with maximum degree 3.

Given integers n, d such that n > d ≥ 3, is there any simple d-polytope
with n vertices that has a Hamiltonian circuit? A more basic question is: Does
there even exist a simple d-polytope with n vertices? Of course, the relation
f1 = dn/2 shows that n must be even if d is odd. The McMullen conditions
provide other restrictions on the possible values of n. Perles and Prabhu (see
Prabhu [1991]) address both questions simultaneously.

Theorem 5.6 (Perles-Prabhu)

i. There is a constant c such that for all n > cd5/2 (where n is even if d is
odd) there exists a simple d-polytope with n vertices that has a Hamiltonian
circuit.

ii. For all d there exists an integer n(d) = O(d5/2) (where n(d) is even if d
is odd) such that there is no simple d-polytope with n(d) vertices.

5.4 Diameter

Probably the most intensively studied question on polytope graphs is that of
the diameter (see Klee-Kleinschmidt [1987]). The diameter δ(P ) of a polytope
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P is the maximum length of a shortest edge-path between two vertices of the
polytope. Write ∆(d, n) for the maximum diameter of d-polytopes with n facets.

Much of the interest in diameters of polytopes comes from the search for
efficient linear programming algorithms. If the function ∆(d, n) is not bounded
by a polynomial in d and n, then no edge-following linear programming algo-
rithm with arbitrary starting vertex could have polynomial complexity. A proof
of a polynomial bound for ∆(d, n) might, on the other hand, suggest an efficient
linear programming algorithm.

In computing ∆ we can restrict the class of polytopes.

Theorem 5.7

i. For n > d ≥ 2, ∆(d, n) is the maximum diameter of a simple d-polytope
with n facets.

ii. For n ≥ 2d ≥ 4, ∆(d, n) is realized as the distance between two vertices
not on a common facet, in a simple d-polytope with n facets.

Following are equivalent conjectures concerning the diameter.

Conjecture 5.8

i. Hirsch Conjecture (Dantzig [1963]). For n > d ≥ 2, ∆(d, n) ≤ n − d.

ii. d-Step Conjecture (Dantzig [1963]). For d ≥ 2, ∆(d, 2d) = d.

iii. Nonrevisiting Conjecture (Klee-Walkup [1967]). Between any two vertices
of a simple polytope, there is a path that does not revisit any facet.

Remarkably little is known about these conjectures. They can fail for spheres
(Walkup [1978]) and for unbounded pointed polyhedra (Klee-Walkup [1967]),
though no d-polyhedron with n facets is known with diameter greater than
2n − 2d. For many values of d and n there are d-polytopes with n facets with
diameter equal n − d (e.g., d-cubes). Barnette [1969] found an upper bound
for ∆ for general d and n that is exponential in d, and then Larman [1970]
obtained a better (but still exponential) bound. This was recently improved by
Kalai [1990c] and further by Kalai-Kleitman [1992]. The lower bound below is
due to Adler [1974].

Theorem 5.9 For n > d ≥ 2,

i. ∆(d, n) ≤ min{n2d−3, n2+log d}.

ii. ∆(d, n) ≥ b(n − d) − n−d
b5d/4c c − 1.

Precise values of ∆(d, n) are known only for small d and n (see Klee-
Kleinschmidt [1987]).

Theorem 5.10
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i. ∆(d, n) = b(d − 1)n/dc − d + 2, if d ≤ 3 or n ≤ d + 4.

ii. ∆(4, 9) = ∆(4, 10) = 5, ∆(5, 9) = 4, and ∆(5, 11) = 6.

Note that when n−d ≤ d ≤ 5, ∆(d, n) attains the Hirsch bound, ∆(d, n) = n−d.
The final result of this section is an easy consequence of a particular class of

regular triangulations.

Theorem 5.11 (Lee [1991b]) Every simple d-polytope P with n facets can be
realized as a facet of a simple (d + 1)-polytope Q with n + 1 facets such that the
diameter of Q does not exceed 2n − 2d.

The proof of the theorem implies that, given any linear program with
bounded feasible region and arbitrary starting vertex, by augmenting the prob-
lem with one variable and one constraint an optimum vertex can be reached in
a linear number of pivots.

6 Combinatorial Structure

6.1 Introduction

Finally we come to the broadest problem, that of classifying the combinato-
rial types of all polytopes. This section deals with asymptotic formulas for
the number of combinatorial types, isotopy, and the realization of types of
spheres as polytopes, rational polytopes and spherical polytopes. We discuss
equifacetted polytopes, barycentric subdivisions, and the numbers of n-gons in
a 3-polytope. We cover only briefly some topics discussed in greater depth in
Klee-Kleinschmidt [1991].

6.2 Regular Polytopes

There has been some speculation that the regular or Platonic solids were the
primary motivation for the Elements of Euclid. The symmetry group of P is
flag transitive if, for any two flags of P , there exists a symmetry which maps
one flag onto the other. The polytope P is regular if its symmetry group is flag
transitive. It is semiregular if it is not regular, but each of its facets is regular
and the symmetry group of P is vertex transitive. See Coxeter [1963].

In three dimensions, Euler’s relation easily implies that the only regular
polytopes are the five Platonic solids. The three dimensional semiregular poly-
topes consist of the thirteen Archimedean solids, together with the two infinite
classes of the prisms and the antiprisms.

Theorem 6.1 Up to rigid motion and scaling, there are five regular 3-polytopes
and six regular 4-polytopes. For all dimensions d > 4 there are only three regular
d-polytopes: the d-cube, the d-crosspolytope, and the regular d-simplex.
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6.3 Numbers of Combinatorial Types

See Klee-Kleinschmidt [1991] for a good summary of this topic. We briefly
mention what is found there.

The combinatorial types of 3-polytopes are well-understood. By Steinitz’s
Theorem, classifying 3-polytopes is equivalent to classifying 3-connected planar
graphs. Exact numbers of combinatorial types of 3-polytopes with at most
22 edges are given in Duivestijn and Federico [1981]. Asymptotic formulas in
terms of number of edges, number of vertices or numbers of facets and vertices
are summarized in Bender [1987]; these are the product of several people’s work
over 25 years.

Theorem 6.2 The number of combinatorial types of 3-polytopes with i+1 ver-
tices and j + 1 facets is asymptotically

1

972ij(i + j)

(

2i

j + 3

)(

2j

i + 3

)

.

Gale diagrams have been used to count the combinatorial types of simplicial
or arbitrary polytopes with d+2 or d+3 vertices; see Section 4.2. A d-polytope
is neighborly if every set of bd/2c vertices forms a face. For even dimension
d, every neighborly d-polytope with d + 2 or d + 3 vertices is equivalent to
a cyclic polytope. The face lattice of a cyclic polytope is specified by Gale’s
evenness criterion (see Grünbaum [1967]). For odd d, the numbers of types of
neighborly d-polytopes with at most d+3 vertices are given in McMullen [1974].
The numbers of d-polytopes and neighborly d-polytopes with d + 4 vertices are
known only for d ≤ 4.

Asymptotic upper and lower bounds for the number of combinatorial types
of d-polytopes have been brought surprisingly close in the last few years. Let
c(n, d) be the number of types of d-polytopes with n vertices, cs(n, d) the number
of these that are simplicial.

Theorem 6.3

i.
(

n−d
d

)nd/4
≤ cs(n, d) ≤ c(n, d) ≤ (n/d)

d2n(1+O( 1
log(n/d)

+
log log(n/d)
d log(n/d)

))
.

ii. c(n, d) ≤ 2n3+O(n2).

This is based on Shemer’s [1982] estimate of the number of simplicial neigh-
borly polytopes, and Goodman’s and Pollack’s [1986] application to configura-
tions of Betti number estimates by Milnor, with improvements by Alon [1986].
Comparing this with Theorem 2.14, we see that there are many more spheres
than polytopes.
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6.4 Isotopy

Björner-Las Vergnas-Sturmfels-White-Ziegler [1991] is a good reference for the
isotopy problem. Steinitz (Steinitz-Rademacher [1934]) proved the isotopy prop-
erty for 3-polytopes. Represent a polytope in 3 with n vertices in some order,
v1, v2, . . . , vn by a length 3n vector (v1, v2, . . . , vn).

Theorem 6.4 Suppose P and Q are two combinatorially equivalent polytopes
in 3 with n vertices in corresponding order. Then there is a path in 3n

connecting P with either Q or the reflection of Q, such that each point of the
path represents a polytope combinatorially equivalent to P .

This isotopy property fails in dimensions higher than 3 (see Section 4.5).
Already in 4 there is a simplicial polytope with 10 vertices for which it fails.
The polytope was first described in Bokowski-Ewald-Kleinschmidt [1984]; that
it fails the isotopy property is due to Mnëv [1988] and Bokowski and Guedes de
Oliveira [1990]; for a good account see Bokowski-Sturmfels [1989].

A group of mathematicians in Leningrad (Viro [1988]) has worked on a more
general study of realization spaces. The realization space of a combinatorial
type of polytope is the set of vector representations of all realizations of the
combinatorial type. A polytope satisfies the isotopy property if its realization
space is connected. Mnëv showed that the general situation is very far from the
isotopy property.

Theorem 6.5 (Mnëv [1988]) For any semi-algebraic variety V there exists a
convex polytope whose realization space is homotopy equivalent to V .

6.5 Realization

Steinitz’s Theorem says that every polyhedral complex homeomorphic to the
2-dimensional sphere can be realized convexly, i.e., as the boundary of a convex
3-polytope. In Section 4.2 we saw that the same was true for (d−1)-dimensional
p.l.-spheres with at most d + 3 vertices. There are two simplicial and forty
nonsimplicial 3-spheres with 8 vertices that cannot be realized as boundaries
of polytopes; see Altshuler-Steinberg [1985] for a complete list of these. Klee
and Kleinschmidt [1991] summarize the numbers of polytopal and nonpolytopal
spheres of various types.

Tarski’s decision method (Grünbaum [1967]) implies the following.

Theorem 6.6 There is a decision procedure to determine whether a given com-
plex is polytopal or not.

However, this method is far from efficient. Though the techniques of oriented
matroids (Section 4.4) are much better, still they cannot handle spheres with
large numbers of vertices relative to the dimension. Further, Sturmfels proved
that the polytopality of a sphere (of dimension at least 5) cannot be determined
locally.
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Theorem 6.7 (Sturmfels [1987a]) For infinitely many different nonpoly-
topal 5-spheres, every subcomplex on fewer vertices can be extended to the bound-
ary of a polytope.

In Section 4.2 it was noted that all d-polytopes with at most d + 3 vertices
can be realized rationally, i.e., with vertices in d. This is also the case for
all simplicial polytopes, and also for all 4-polytopes with at most 8 vertices
(Altshuler-Steinberg [1985]). Another consequence of Steinitz’s Theorem is that
the same holds for 3-polytopes.

Theorem 6.8 All combinatorial types of 3-polytopes can be realized with ratio-
nal vertices.

We do not know if this continues to hold for 4- and 5-polytopes, but it fails
in higher dimensions.

Theorem 6.9 (Sturmfels [1987c]) The decidability of the existence of a ra-
tional realization of a lattice as the face lattice of a polytope is equivalent to the
decidability of the existence of rational roots of polynomials with integer coeffi-
cients.

Theorem 6.10

i. All d-polytopes can be realized in d, where is the field of real algebraic
numbers.

ii. For every proper subfield Φ of , there is a 6-polytope not realizable in Φ6.

Part (i) of the above theorem is due to Lindström [1971], and part (ii) to
Sturmfels [1987a].

There are two main questions concerning the realization of facets of poly-
topes. One asks whether the shape of a facet F of a d-polytope P can be
preassigned. In Section 4.2 we saw this was always the case if P had no more
than d + 3 vertices. This holds also when d = 3.

Theorem 6.11 (Barnette-Grünbaum [1970]) The shape of any facet of
any 3-polytope can be preassigned.

A polytope is equifacetted if all its facets are of the same combinatorial type.
A d-polytope is facet-forming (or a d-facet) if it is the combinatorial type of
the facets of some equifacetted (d+1)-polytope; otherwise it is a nonfacet. It is
easy to classify 2-polytopes using the condition on p-vectors (see Section 6.7).
The triangle, quadrilateral and pentagon are facet-forming, while the n-gon is a
nonfacet for every n ≥ 6. For higher dimensions no classification is known. See
Perles and Shephard [1967], Barnette [1980], and Schulte [1985]. Any d-polytope
with d+2 vertices is facet-forming. Facet-forming polytopes with large numbers
of vertices are also known.

46



Among the equifacetted polytopes are the (combinatorially) regular poly-
topes, for which vertex-figures are also all of the same combinatorial type. The
icosahedron is not yet classified as facet-forming or a nonfacet; all other regular
3-polytopes are known to be facet-forming. The simplex and cube are the only
facet-forming regular 4-polytopes (Kalai [1990b]). For general d, the d-simplex
and d-cube are, of course, facet-forming; the d-crosspolytope is a nonfacet for
d ≥ 4.

6.6 Barycentric Subdivisions

Let P be a convex d-polytope. Perform a stellar subdivision of P with respect to
each of its proper faces in succession, going from high to low dimensional faces.
The result is the barycentric subdivision of P , ∆(P ), a simplicial d-polytope
with vertices corresponding to proper faces of P and faces corresponding to
chains of faces of P . As a simplicial complex this is also known as the order
complex of the face lattice of P (with least and greatest elements omitted). If
each vertex of ∆(P ) is labeled with the dimension of the corresponding face
of P , then each facet of ∆(P ) has exactly one vertex with each of the labels
0, 1, . . . , d − 1.

A simplicial (d − 1)-complex ∆ is balanced if, under some labeling of ver-
tices, each facet has one vertex of each label. By connectedness, the labeling is
essentially unique in the case that ∆ is a balanced sphere. Not all balanced sim-
plicial d-polytopes arise as barycentric subdivisions of polytopes. Those that are
barycentric subdivisions of regular CW spheres have been characterized using
flag vectors (Bayer [1988]). The definition of flag vectors is extended to balanced
simplicial complexes as follows. Let ∆ be a balanced simplicial (d− 1)-complex
with vertices labeled by 0, 1, . . . , d− 1. For each subset S ⊆ {0, 1, . . . , d − 1} let
fS(∆) be the number of simplices in ∆ whose vertices have exactly the labels of
S. Note that for a d-polytope P , and the labeling described above for the ver-
tices of ∆(P ), fS(∆(P )) agrees with the flag number fS(P ). Thus the numbers
fS(∆(P )) satisfy the generalized Dehn-Sommerville equations (see Section 3.7).
For an arbitrary balanced simplicial polytope ∆ the numbers fS(∆) do not
necessarily satisfy these equations.

For the characterization of barycentric subdivisions we must go beyond poly-
topes. Regular CW spheres share some of the combinatorial properties of poly-
topes. For the definition and motivation for regular CW spheres, see Björner
[1984].

Theorem 6.12 (Bayer [1988]) For any simplicial polytope ∆, ∆ is the
barycentric subdivision of a regular CW sphere if and only if, for some ver-
tex labeling of ∆, the numbers fS(∆) satisfy the generalized Dehn-Sommerville
equations.

It is an open problem to distinguish barycentric subdivisions of polytopes
(or even of polyhedral spheres) among those of regular CW spheres. We know
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of no example of a p.l. regular CW sphere whose barycentric subdivision is not
polytopal.

6.7 p-vectors of 3-polytopes

We conclude our survey with a simple question of the combinatorics of 3-
polytopes that remains open. What are the possible distributions of n-gons
as facets of 3-polytopes? A partial answer was given a hundred years ago by
Eberhard (see Grünbaum [1967]). For a 3-polytope P and an integer n ≥ 3, let
pn(P ) be the number of P ’s facets that are n-gons. The sequence (pn)n≥3 is
the p-vector of P . Call a sequence p = (p3, p4, p5, p7, p8, . . .) a reduced (simple)
p-vector if some value of p6 can be inserted to get the p-vector of some (simple)
3-polytope.

Theorem 6.13 (Eberhard [1891]) A sequence (p3, p4, p5, p7, p8, . . .) of natu-
ral numbers, only finitely many nonzero, is a reduced (simple) p-vector if and
only if

∑

n≥3(6 − n)pn is even and is at least (equal to) 12.

The values of p6 that complete a given reduced simple p-vector are now
fairly well understood. The following result is from Jendrol’ [1983]; it in-
corporates contributions by various people. For p = (p3, p4, p5, p7, p8, . . .)
a reduced simple p-vector, write σ =

∑

j 6=6 pj , ρ =
∑

j 6≡0 (mod 3) pj , and

P(p) = {p6 : p6 completes p to a simple p-vector}.

Theorem 6.14 Let p be a reduced simple p-vector.

i. If ρ ≤ 2, then for some integer m, P(p) contains every integer k ≥ m of
the same parity as σ and no integer of the opposite parity.

ii. If ρ ≥ 3, then for some integer m, P(p) contains every integer k ≥ m.

In both cases m can be chosen to be at most
∑

j 6=6 jpj.
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